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Exactly solvable pairing Hamiltonian for heavy nuclei
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We present a new exactly solvable Hamiltonian with a separable pairing interaction and nondegenerate
single-particle energies. It is derived from the hyperbolic family of Richardson-Gaudin models and possesses
two free parameters, one related to an interaction cutoff and the other to the pairing strength. These two
parameters can be adjusted to give an excellent reproduction of Gogny self-consistent mean-field calculations in
the Hartree-Fock basis.
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Pairing is one of the most important ingredients of
the effective nuclear interaction in atomic nuclei, as was
recognized early on by Bohr et al. [1] in an attempt to
explain the large gaps observed in even-even nuclei. They
suggested that the newly proposed Bardeen-Cooper-Schriefer
(BCS) [2] theory of superconductivity could be a useful
tool in nuclear structure, although care should be taken with
the violation of particle number in finite nuclei. Since then,
BCS or the more general Hartree-Fock-Bogoliubov (HFB)
theory, combined with effective or phenomenological nuclear
forces, has been the standard tool to describe the low-energy
properties of heavy nuclei. Improvements over BCS or HFB
came through the restoration of broken symmetries, especially
particle-number projection, which is still a problem not
satisfactorily solved with density-dependent forces [3]. From a
different perspective, Richardson found an exact solution of the
constant-pairing problem with nondegenerate single-particle
energies as early as 1963 [4]. Though highly schematic, the
constant-pairing force has been used for decades in nuclear
structure with several approximations [BCS, random-phase
approximation (RPA), projected BCS (PBCS), etc.], but rarely
resorting to the exact solution. Almost forgotten, the exact
Richardson solution was recovered within the framework
of ultrasmall superconducting grains [5], in which not only
number projection but also pairing fluctuations were essential
to describe the disappearance of superconductivity as a
function of the grain size.

By combining the Richardson exact solution with the
integrable model proposed by Gaudin [6] for quantum spin
systems, it was possible to derive three families of integrable
models called Richardson-Gaudin (RG) models [7]. The
rational family, extensively used since then, contains the
Richardson model as a particular exactly solvable Hamilto-
nian, as well as many other exactly solvable Hamiltonians of
relevance in quantum optics, cold-atom physics, quantum dots,
etc. [8]. However, the other families did not find a physical
realization until very recently when it was shown that the
hyperbolic family could model a p-wave pairing Hamiltonian
in a two-dimensional lattice [9], such that it was possible to
study, with the exact solution, an exotic phase diagram having

a nontrivial topological phase and a third-order quantum phase
transition [10]. In this Rapid Communication, we will show
that the hyperbolic family gives rise to a separable pairing
Hamiltonian with two free parameters that can be adjusted to
reproduce the properties of heavy nuclei as described by a
Gogny HFB treatment.

Let us start our derivation with the integrals of motion of the
hyperbolic RG model [7], which can be written in a compact
form [11] as
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where Sz
i and S±

i are the three generators of the SU (2)i
algebra of copy i with spin representation si such that 〈S2

i 〉 =
si(si + 1). We assume L SU (2)-algebra copies, i = 1, . . . , L.
The L operators Ri contain L free parameters ηi plus the
strength of the quadratic term γ . The integrals of motion (1)
commute among themselves and with the z component of the
total spin, Sz = ∑L

i=1 Sz
i . Therefore, they have a common basis

of eigenstates, which are parametrized by the ansatz
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where |ν〉 is the vacuum of the lowering operators, S−
i |ν〉 = 0,

and the Eβ (β = 1, . . . ,M) are the pair energies or pairons,
which are determined by the condition that the ansatz (2)
must satisfy the eigenvalue equations Ri |�M〉 = ri |�M〉 for
every i.

In the pair representation of the SU (2) algebra, the genera-
tors are expressed in terms of fermion creation and annihilation
operators S+

i = c
†
i c

†
i
= (S−)† and Sz

i = (c†i ci + c
†
i
ci − 1)/2.

Each SU (2) copy is associated with a single-particle level
i, where i is the time-reversed partner, and M is the number of
active pairs. The vacuum |ν〉 is defined by a set of seniorities,
|ν〉 = |ν1, ν2, . . . , νl〉, where the seniority νi = 0, 1 is the
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number of unpaired particles in level i, which determines the
spin associated to the level as si = (1 − νi)/2. The blocking
effect of the unpaired particles reduces the number of active
levels to Lc = L − ∑

i νi .
Although any function of the integrals of motion gen-

erates an exactly solvable Hamiltonian, we will restrict
ourselves in this presentation to the simple linear combination
H = λ

∑
i ηiRi . By defining λ = [1 + 2γ (1 − M) + γLc]−1,

and after some algebraic manipulations, the Hamiltonian
reduces to

H =
∑

i

ηiS
z
i − G

∑
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√
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+
i S−

i ′ , (3)

where G = 2λγ is a free parameter.
This Hamiltonian, expressed in a two-dimensional

momentum-space basis, gave rise to the celebrated px + ipy

model of p-wave pairing [9,10]. However, if we interpret the
parameters ηi as single-particle energies corresponding to a
nuclear mean-field potential, the pairing interaction has the
unphysical behavior of increasing in strength with energy. In
order to reverse this unwanted effect, we define ηi = 2(εi − α),
where the free parameter α plays the role of an energy cutoff
and εi is the single-particle energy of the mean-field level i.
Making use of the pair representation of the SU (2), the exactly
solvable pairing Hamiltonian (3) takes the form
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with eigenvectors given by (2), and eigenvalues

E = 2αM +
∑

i

εiνi +
∑

β

Eβ. (5)

Here, the pairons Eβ correspond to a solution of the set of
nonlinear Richardson equations,

∑
i
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ηi − Eβ

−
∑
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= Q
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, (6)

where Q = 1
2G

− Lc

2 + M − 1. Each particular solution of
Eq. (6) defines a unique eigenstate (2).

In order to get an insight into the solutions of (6), we show
in Fig. 1 the ground-state pairon dependence on the pairing
strength G for a schematic system of M = 10 pairs moving in
a set of L = 24 equally spaced single-particle levels (εi = i)
and a cutoff α = 24. For G → 0, the pairons are all real and
stay close to a set of M parameters ηi (the M lowest η’s for the
ground-state configuration) in order to cancel the divergence
in the right-hand side of (6). As G increases, the pairons move
down in energy until they reach a critical value of G ≈ 0.012
for which the two pairons closest to the Fermi level collapse to
η = −30. Immediately thereafter, they acquire an imaginary
part and expand in the complex plane as a complex-conjugate
pair. The same phenomenon happens to the other pairons as G

is further increased, forming an arc in the complex plane, as
can be seen in the inset of Fig. 1. Even though the behavior of
the pairons resembles that of the rational model [8], there are
qualitative differences associated to the nonconstant form of

FIG. 1. Real and imaginary parts of the ground-state pairons as
a function of pairing strength, for a set of 24 equally spaced single-
particle levels (εi = i), a cutoff α = 24, and M = 10 pairs. The inset
shows the pairon distribution in the complex plane for two different
pairing strengths.

the pairing interaction that will turn out to be essential for the
description of heavy nuclei.

In what follows, we will derive the two free parameters
G and α of the integrable Hamiltonian (4) by fitting its
BCS wave function to a Gogny HFB calculation in the basis
that diagonalizes the Hartree-Fock (HF) matrix. The HFB
calculations with the Gogny force have been carried out with
the standard D1S parametrization [12]. The pairing tensor is
not exactly diagonal, but we have checked that the off-diagonal
contributions are much smaller than the diagonal ones. In this
approximation, HFB in the HF basis is equivalent to BCS.

Due to the separable character of the integrable pairing
interaction, the state-dependent gaps and the pairing tensor in
the BCS approximation are


i = 2G
√

α − εi

∑
i ′

√
α − εi ′ui ′vi ′ = 


√
α − εi, (7)

uivi = 

√
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2
√

(εi − μ)2 + (α − εi)
2
. (8)

Note that the gaps 
i and the pairing tensor uivi depend on
a single gap parameter 
 and have a square-root dependence
on the single-particle energy. Hence, the model has a highly
restricted form for both magnitudes that we will test against the
Gogny gaps 
G

i = ∑
i ′ Vii,i ′i ′u

G
i ′ v

G
i ′ and pairing tensor uG

i vG
i ,

where Vii,i ′i ′ are the matrix elements of the Gogny force in
the HF basis and (uGvG) is the HFB eigenvector. We take the
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single-particle energies εi of the integrable Hamiltonian from
the HF energies of the Gogny HFB calculations and we set
up an energy cutoff of 30 MeV on top of the Fermi energy.
Occupation probabilities above this cutoff are lower than 10−3

and oscillate randomly. In order to fit the two parameters of
the model α and G, and to fulfill the BCS equations for the
chemical potential μ and the gap 
, we solve the following
three coupled equations for the chemical potential μ, the gap

, and the parameter α:

2M − L +
∑
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= 0, (9)
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where ti = √
α − εi , ξi = (εi − μ), and the quasiparticle

energy Ei =
√

ξi
2 + 
i

2. Equation (9) is the BCS number
equation that fixes the chemical potential μ. Equation (10) is
a fitting of the Gogny pairing tensor uG

i vG
i with respect to the

gap parameters 
, i.e., we minimize
∑iF +n+1

i=iF −n (uG
i vG

i − uivi)2

with respect to 
. Here, we select n levels above and
below the Fermi energy in order to enhance the quality of
the fit for the most correlated levels. We typically choose
n ∼ 10. Finally, Eq. (11) fixes the interaction cutoff α by
minimizing the differences

∑
i(


G
i − 


√
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the state-dependent Gogny gaps 
G
i and 
i , with respect to α.

Once μ, α, and 
 are fixed, the pairing strength is determined
from Eqs. (7) and (8),

1

G
=

∑
i
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ξ 2
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2

.

As a first step to ascertain the quality of the hyperbolic
Hamiltonian (4) to reproduce the superfluid features of heavy
nuclei, we show in Fig. 2 the state-dependent gaps 
i and the
pairing tensor uivi for protons corresponding to two heavy
nuclei, 154Sm and 238U. Following the fitting procedure, we
consider all levels below 30 MeV above the Fermi energy
and solve self-consistently Eqs. (9)–(11) for the chemical
potential μ, the gap parameter 
, and the interaction cutoff α.
Figure 2 shows a remarkable agreement between the Gogny
force and the hyperbolic Hamiltonian for the pairing tensor.
The Gogny state-dependent gaps exhibit large fluctuations
due to the details of the two-body Gogny force. However,
the general trend of the gaps is very well described by the
square root

√
(α − εi) of the hyperbolic model. Although

238U has 50% more proton pairs than 154Sm, the quality of
the mapping is excellent for both nuclei. It is interesting to
note that the rational model, leading to the constant-pairing,
exactly solvable, Richardson Hamiltonian, has a constant gap
(a horizontal line) failing completely to describe the Gogny
gaps. Table I shows the fitted values of pairing strength G and
the interaction cutoff α. It also shows the gap parameter 
 and

FIG. 2. State-dependent gaps 
i and pairing tensor uivi for
protons in 238U and 154Sm. Open circles are Gogny HFB calculations
in the HF basis, while the solid lines are the BCS results of the
integrable Hamiltonian.

the correlations energies, defined as the total energy minus the
HF energy, for both nuclei.

Once we have set up the procedure to define the parameters
of the hyperbolic Hamiltonian in the BCS approximation, we
are ready to explore the exact solution. For a general pairing
Hamiltonian, the dimension of the Hilbert space is given by
the binomial B(L,M). Taking into account that (M,L) are
(31, 91) for 154Sm and (46, 148) for 238U, the corresponding
dimensions of the Hamiltonian matrices are 1.98 × 1024

and 4.83 × 1038, respectively. These dimensions are well
beyond the limits of a large-scale diagonalization. However,
the integrability of the hyperbolic Hamiltonian allows us to

TABLE I. Parameter values, gaps, and correlation energies in
MeV units for protons in 154Sm and 238U. EG is the Gogny energy, and
EBCS and EExact are the BCS and the exact energies of the integrable
Hamiltonian (4), respectively.

G α 
 EG
Corr EBCS

Corr EExact
Corr

154Sm 2.24 × 10−3 32.72 0.1577 1.3254 1.0164 2.9247
238U 1.99 × 10−3 25.25 0.1594 0.8613 0.5031 2.6511
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FIG. 3. Pair energies (gray circles) of the exact ground-state
solution for protons in 238U and 154Sm. The horizontal segments
in the real axis represent the parameters ηi = 2(εi − α).

obtain the exact solution by solving numerically the set of M

nonlinear coupled Richardson equations (6) using the method
described in [13]. The exact correlation energy shown in
Table I is, in both nuclei, considerably greater than the mean-
field results, reflecting the importance of beyond-mean-field

quantum correlations and number fluctuations. The exact
ground-state wave function is completely determined by the
position of the M pairons in the complex plane. Figure 3
shows the exact ground states for both nuclei. Considering the
structure of the pair wave functions (2), we may argue that 238U
has four correlated Cooper pairs, while 154Sm has only two.
Further analysis of the Cooper-pair wave function from the
exact solutions, as was carried out in [14] for cold atoms and
in [13] for nuclei within the rational model, is straightforward
but beyond the scope of this Rapid Communication.

In summary, we have presented a new, exactly solvable
Hamiltonian with separable pairing interaction and nondegen-
erate single-particle energies (4), which arises as a particular
linear combination of the hyperbolic integrals of motion (1).
The separable form of the pairing matrix elements could
be derived from a novel Thomas-Fermi approximation for
a contact interaction in a square-well potential [15]. We
have shown that the separable Hamiltonian (4) with two free
parameters is able to reproduce qualitatively the general trend
of the state-dependent gaps, as described by the Gogny force
in the HF basis. At the same time, it reproduces accurately the
HFB wave function represented by the pairing tensor. As such,
our exactly solvable Hamiltonian is an excellent benchmark
for testing approximations beyond HFB in realistic situations
for even and odd nuclei. Moreover, a self-consistent HF plus
exact pairing approach could be set up along the lines of
Ref. [16] for well-bound nuclei. The inclusion of exact T = 1
proton-neutron pairing within this self-consistent approach is
also possible [17].
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