3,455 research outputs found

    Design curve for liquid helium storage vessels

    Get PDF
    Development of equipment for storage of liquid helium is discussed. Derivation of design curve and working equations for estimating effects of either perfect or imperfect heat transfer in storage device are described. Mathematical models of heat transfer conditions are provided

    Mechanisms of boron fiber strengthening by thermal treatment

    Get PDF
    The fracture strain for boron on tungsten fibers was studied for improvement by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanism responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 plus or minus 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method

    Anelastic deformation of boron fibers

    Get PDF
    The flexural deformation behavior of vapor-deposited boron fibers was examined from 100 to 1100 K by stress-relaxation and internal friction techniques. Only strong thermally-activated anelasticity was observed with no evidence of plasticity up to surface strains of 0.006. The parameters governing the relaxation processes within the anelastic spectra of as-received and annealed fibers were determined. These parameters were correlated with X-ray structure studies to develop preliminary models for the sources of boron's anelasticity. The large relaxation strengths of the dominant Ia processes coupled with their relaxation times and energies suggest a sliding mechanism between certain basic structural subunits common to both the beta-rhombohedral and vapor-deposited boron structures

    Mechanical and physical properties of modern boron fibers

    Get PDF
    The results of accurate measurements of the modern boron fiber's Young's modulus, flexural modulus, shear modulus, and Poisson's ratio are reported. Physical property data concerning fiber density, thermal expansion, and resistance obtained during the course of the mechanical studies are also given

    Techniques for increasing boron fiber fracture strain

    Get PDF
    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments

    Time temperature-stress dependence of boron fiber deformation

    Get PDF
    Flexural stress relaxation (FSR) and flexural internal friction (FIF) techniques were employed to measure the time-dependent deformation of boron fibers from -190 to 800 C. The principal specimens were 203 micrometers diameter fibers commercially produced by chemical vapor deposition (CVD) on a 13 micrometer tungsten substrate. The observation of complete creep strain recovery with time and temperature indicated that CVD boron fibers deform flexurally as anelastic solids with no plastic component

    Operational experiences of a commercial helicopter flown in a large metropolitan area

    Get PDF
    A survey of commercial helicopter-operating experiences was conducted using a helicopter flight recorder in order to provide a basis for extending helicopter design and service-life criteria. These data are representative of 182 flight hours accumulated during 1414 flights comprised of the separate legs of the total route structure employed. The operating experiences are presented in terms of the time spent within different airspeed brackets, within the classifiable flight conditions of climb, en route, and descent, at various rates of climb and descent, and at different rotor rotational speeds. The results indicated that the helicopter spent a majority of the flight time at airspeeds either below 40 knots or above 100 knots. Rates of climb and descent were concentrated at values below 5.1 m/s (1000 ft/min) particularly for higher airspeeds. Normal acceleration experiences were low, both in the total number and peak value realized; however, an extremely large number of pitch angular-velocity experiences were noted. Rotor rotational speeds were normal with no occurrences above the upper red-line limit

    High temperature structural fibers: Status and needs

    Get PDF
    The key to high temperature structural composites is the selection and incorporation of continuous fiber reinforcement with optimum mechanical, physical, and chemical properties. Critical fiber property needs are high strength, high stiffness, and retention of these properties during composite fabrication and use. However, unlike polymeric composites where all three requirements are easily achieved with a variety of commercially available carbon-based fibers, structural fibers with sufficient stiffness and strength retention for high temperature metal, intermetallic, and ceramic composites are not available. The objective here is to discuss in a general manner the thermomechanical stability problem for current high performance fibers which are based on silicon and alumina compositions. This is accomplished by presenting relevant fiber property data with a brief discussion of potential underlying mechanisms. From this general overview, some possible materials engineering approaches are suggested which may lead to minimization and/or elimination of this critical stability problem for current high temperature fibers

    High performance fibers for structurally reliable metal and ceramic composites

    Get PDF
    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines

    Predicting the time-temperature dependent axial failure of B/A1 composites

    Get PDF
    Experimental and theoretical studies were conducted in order to understand and predict the effects of time, temperature, and stress on the axial failure modes of boron fibers and B/A1 composites. Due to the anelastic nature of boron fiber deformation, it was possible to determine simple creep functions which can be employed to accurately describe creep and fracture stress of as-produced fibers. Analysis of damping and strength data for B/6061 A1 composites indicates that fiber creep effects of creep on fiber fracture are measurably reduced by the composite fabrication process. The creep function appropriate for fibers with B/Al composites was also determined. A fracture theory is presented for predicting the time-temperature dependence of the axial tensile strength for metal matrix composites in general and B/A1 composites in particular
    corecore