179 research outputs found
The Impact of Railway Stations on Residential and Commercial Property Value: A Meta-analysis
Railway stations function as nodes in transport networks and places in an urban environment. They have accessibility and environmental impacts, which contribute to property value. The literature on the effects of railway stations on property value is mixed in its finding in respect to the impact magnitude and direction, ranging from a negative to an insignificant or a positive impact. This paper attempts to explain the variation in the findings by meta-analytical procedures. Generally the variations are attributed to the nature of data, particular spatial characteristics, temporal effects and methodology. Railway station proximity is addressed from two spatial considerations: a local station effect measuring the effect for properties with in 1/4 mile range and a global station effect measuring the effect of coming 250 m closer to the station. We find that the effect of railway stations on commercial property value mainly takes place at short distances. Commercial properties within 1/4 mile rang are 12.2% more expensive than residential properties. Where the price gap between the railway station zone and the rest is about 4.2% for the average residence, it is about 16.4% for the average commercial property. At longer distances the effect on residential property values dominate. We find that for every 250 m a residence is located closer to a station its price is 2.3% higher than commercial properties. Commuter railway stations have a consistently higher positive impact on the property value compared to light and heavy railway/Metro stations. The inclusion of other accessibility variables (such as highways) in the models reduces the level of reported railway station impact. © 2007 Springer Science+Business Media, LLC
Nutritive value of unconventional fibrous ingredients fed to Guinea pigs in the Democratic Republic of Congo
peer reviewedThe energy and protein value for Guinea pigs (GP) of 9 forages (7 dicots and 2 grasses) and 5 hay-based diets was determined. The apparent faecal digestibility of dry matter, organic matter, crude protein and energy was measured on GP housed in metabolic cages. The forages and the diets were digested in vitro using pepsin and pancreatin hydrolysis and gas fermentation test to simulate stomach, small intestine and large intestine, respectively. Most of the dicots had high digestible crude protein content (152–201 g/kg DM) and the 2 grasses showed lower values (80–85 g/kg DM). Digestible energy content of the forages ranged between 5.79 to 13.08 MJ/kg DM. None of the forage species or hay-based diets provided sufficient energy to supply the 11.7 MJ/kg metabolic energy requirements. The influence of intestinal fermentation on energy and protein values was highlighted by correlations (P<0.05) between in vivo and in vitro data, including gas fermentation. It is the first time that such relationships are reported in single-stomach animals
Computational analyses of eukaryotic promoters
Computational analysis of eukaryotic promoters is one of the most difficult problems in computational genomics and is essential for understanding gene expression profiles and reverse-engineering gene regulation network circuits. Here I give a basic introduction of the problem and recent update on both experimental and computational approaches. More details may be found in the extended references. This review is based on a summer lecture given at Max Planck Institute at Berlin in 2005
From Structure Prediction to Genomic Screens for Novel Non-Coding RNAs
Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other
Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?
Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes (34S/32S, referred to as δ34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs
Imaging biomarker roadmap for cancer studies.
Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution
Effective control of sars-cov-2 transmission between healthcare workers during a period of diminished community prevalence of covid-19
Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to nearzero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK ‘lockdown’. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent ‘hubs’ of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely
Imaging biomarker roadmap for cancer studies.
Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution
The impact of viral mutations on recognition by SARS-CoV-2 specific TÂ cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
- …