293 research outputs found

    On Strong Domination Number of Graphs

    Get PDF
    A subset S of a vertex set V is called a dominating set of graph G if every vertex of V -S is dominated by some element of set S. If e is an edge with end vertices u and v and degree of u is greater than or equal to degree of v then we say u strongly dominates v. If every vertex of V - S is strongly dominated by some vertex of S then S is called strong dominating set. The minimum cardinality of a strong dominating set is called the strong domination number of graph. We investigate strong domination numbers of some graphs and study related parameter

    State of art and next challenges in instrumentation for quality control in hadrontherapy centres

    Get PDF
    In this document we aim at summarising the different points so far addressed and those that are still to be resolved in instrumentation for quality control in hadrontherapy centres. This includes on line in beam PET for dose deposition monitoring, beam hodoscope and prompt gamma monitoring

    Oscillation threshold of a clarinet model: a numerical continuation approach

    Full text link
    This paper focuses on the oscillation threshold of single reed instruments. Several characteristics such as blowing pressure at threshold, regime selection, and playing frequency are known to change radically when taking into account the reed dynamics and the flow induced by the reed motion. Previous works have shown interesting tendencies, using analytical expressions with simplified models. In the present study, a more elaborated physical model is considered. The influence of several parameters, depending on the reed properties, the design of the instrument or the control operated by the player, are studied. Previous results on the influence of the reed resonance frequency are confirmed. New results concerning the simultaneous influence of two model parameters on oscillation threshold, regime selection and playing frequency are presented and discussed. The authors use a numerical continuation approach. Numerical continuation consists in following a given solution of a set of equations when a parameter varies. Considering the instrument as a dynamical system, the oscillation threshold problem is formulated as a path following of Hopf bifurcations, generalizing the usual approach of the characteristic equation, as used in previous works. The proposed numerical approach proves to be useful for the study of musical instruments. It is complementary to analytical analysis and direct time-domain or frequency-domain simulations since it allows to derive information that is hardly reachable through simulation, without the approximations needed for analytical approach

    Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments

    Get PDF
    Background: Considerable number of indoor navigation systems has been proposed to augment people with visual impairments (VI) about their surroundings. These systems leverage several technologies, such as computer-vision, Bluetooth low energy (BLE), and other techniques to estimate the position of a user in indoor areas. Computer-vision based systems use several techniques including matching pictures, classifying captured images, recognizing visual objects or visual markers. BLE based system utilizes BLE beacons attached in the indoor areas as the source of the radio frequency signal to localize the position of the user. Methods: In this paper, we examine the performance and usability of two computer-vision based systems and BLE-based system. The first system is computer-vision based system, called CamNav that uses a trained deep learning model to recognize locations, and the second system, called QRNav, that utilizes visual markers (QR codes) to determine locations. A field test with 10 blindfolded users has been conducted while using the three navigation systems. Results: The obtained results from navigation experiment and feedback from blindfolded users show that QRNav and CamNav system is more efficient than BLE based system in terms of accuracy and usability. The error occurred in BLE based application is more than 30% compared to computer vision based systems including CamNav and QRNav. Conclusions: The developed navigation systems are able to provide reliable assistance for the participants during real time experiments. Some of the participants took minimal external assistance while moving through the junctions in the corridor areas. Computer vision technology demonstrated its superiority over BLE technology in assistive systems for people with visual impairments. - 2019 The Author(s).Scopu

    KinFit: A factual aerobic sport game with stimulation support

    Get PDF
    Overweight and obesity is a situation where a person has stacked too much fat that might affect negatively his/her health. Many people skip doing exercises due to several facts related to the encouragement, health-awareness, and time arrangement. Diverse aerobic video games have been proposed to help users in doing exercises. However, we observe some limitations in existing games. For instance, they don't give correct scores while wearing Arabic traditional suits, they don't consider showing immersive realistic scenes, and they don't stimulate users to do exercises and keeping them encouraged to play more. We propose in this paper an aerobic video game that displays real scenes of aerobic coaches and keeps the user notified about doing exercises. It is a kind of serious games that allows users to learn aerobic movements and practice with aerobic coaches. It contains several exercises in which each can be played on normal screen or in fully immersive virtual reality (VR). While the user is playing, he/she can see the playing score with the estimated amount of burned calories. It stores the time when the user plays to remind him/her about doing exercises again. The profound user studies demonstrated the usability and effectiveness of the proposed game. 2018 Kassel University Press GmbH.The authors would like to acknowledge that devices and equipment were provided by the Visual Computing Research Center, Department of Computer Science and Engineering, at Qatar University. This publication was supported by Qatar University Collaborative High Impact Grant QUHI-CENG-18/19-1. The content of this article and its quality are solely the responsibility of the authors and do not necessarily represent the official views of Qatar University.Scopu

    Idealized digital models for conical reed instruments, with focus on the internal pressure waveform

    No full text
    International audienceTwo models for the generation of self-oscillations of reed conical woodwinds are presented. They use the fewest parameters (of either the resonator or the ex-citer), whose influence can be quickly explored. The formulation extends iterated maps obtained for loss-less cylindrical pipes without reed dynamics. It uses spherical wave variables in idealized resonators, with one parameter more than for cylinders: the missing length of the cone. The mouthpiece volume equals that of the missing part of the cone, and is implemented as either a cylindrical pipe (first model) or a lumped element (second model). Only the first model adds a length parameter for the mouthpiece and leads to the solving of an implicit equation. For the second model, any shape of nonlinear characteristic can be directly considered. The complex characteristics impedance for spherical waves requires sampling times smaller than a round trip in the resonator. The convergence of the two models is shown when the length of the cylindrical mouthpiece tends to zero. The waveform is in semi-quantitative agreement with experiment. It is concluded that the oscillations of the positive episode of the mouthpiece pressure are related to the length of the missing part, not to the reed dynamics

    Real time monitoring of the Bragg-peak position in ion therapy by means of single photon detection

    No full text
    For real-time monitoring of the longitudinal position of the Bragg-peak during an ion therapy treatment, a novel non-invasive technique has been recently proposed that exploits the detection of prompt -rays issued from nuclear fragmentation. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the carbon ion range and the prompt photon profile. Additionally, an extensive study has been performed to investigate whether a prompt neutron component may be correlated with the carbon ion range. No such correlation was found. The present paper demonstrates that a collimated set-up can be used to detect single photons by means of time-of-flight measurements, at those high energies typical for ion therapy. Moreover, the applicability of the technique both at cyclotron and synchrotron facilities is shown. It is concluded that the detected photon count rates provide sufficiently high statistics to allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions

    NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    Full text link
    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electronics, read-out, clock distribution, slow control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    The variable finesse locking technique

    Get PDF
    Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way
    • 

    corecore