47 research outputs found

    Non-native vascular flora of the Arctic : Taxonomic richness, distribution and pathways

    Get PDF
    We present a comprehensive list of non-native vascular plants known from the Arctic, explore their geographic distribution, analyze the extent of naturalization and invasion among 23 subregions of the Arctic, and examine pathways of introductions. The presence of 341 non-native taxa in the Arctic was confirmed, of which 188 are naturalized in at least one of the 23 regions. A small number of taxa (11) are considered invasive; these plants are known from just three regions. In several Arctic regions there are no naturalized non-native taxa recorded and the majority of Arctic regions have a low number of naturalized taxa. Analyses of the non-native vascular plant flora identified two main biogeographic clusters within the Arctic: American and Asiatic. Among all pathways, seed contamination and transport by vehicles have contributed the most to non-native plant introduction in the Arctic.Peer reviewe

    A genome for gnetophytes and early evolution of seed plants

    Get PDF
    Genome sequencing, assembly and annotation were conducted by the Novogene Bioinformatics Institute, Beijing, China; mutual contracts were No. NHT140016 and NVT140016004. This work was supported by funding from the Scientific Project of Shenzhen Urban Administration (201519) and a Major Technical Research Project of the Innovation of Science and Technology Commission of Shenzhen (JSGG20140515164852417). Additional funding was provided in particular by the Scientific Research Program of Sino-Africa Joint Research Center (SAJL201607). We thank X.Q. Wang, G.W. Hu, Z.D. Chen and Y.H. Guo for comments on gnetophyte phylogenetic relationships and ecological issues; H. Wu and X.P. Ning for discussion of related organ development; K.K. Wan and S. Sun for additional help on the analysis of repeats. We also thank X.Y. for support of funding coordination. Y.V.d.P. acknowledges the Multidisciplinary Research Partnership ‘Bioinformatics: from nucleotides to networks’ Project (no. 01MR0310W) of Ghent University, and funding from the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement 322739-DOUBLEUP

    Repeat-sequence turnover shifts fundamentally in species with large genomes

    Get PDF
    Given the 2,400-fold range of genome sizes (0.06–148.9 Gbp (gigabase pair)) of seed plants (angiosperms and gymnosperms) with a broadly similar gene content (amounting to approximately 0.03 Gbp), the repeat-sequence content of the genome might be expected to increase with genome size, resulting in the largest genomes consisting almost entirely of repetitive sequences. Here we test this prediction, using the same bioinformatic approach for 101 species to ensure consistency in what constitutes a repeat. We reveal a fundamental change in repeat turnover in genomes above around 10 Gbp, such that species with the largest genomes are only about 55% repetitive. Given that genome size influences many plant traits, habits and life strategies, this fundamental shift in repeat dynamics is likely to affect the evolutionary trajectory of species lineages.We thank Natural Environment Research Council (NE/G020256/1), the Czech Academy of Sciences (RVO:60077344) and RamĂłn y Cajal Fellowship (RYC-2017-2274) funded by the Ministerio de Ciencia y TecnologĂ­a (Gobierno de España) for support. We also thank Natural Environment Research Council for funding a studentship to S.D. and the China Scholarship Council for funding W.W.Abstract Main Methods Data availability Code availability References Acknowledgements Author information Ethics declarations Additional information Extended data Supplementary information Rights and permissions About this article Further readin

    A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America

    Full text link
    Ephedra comprises approximately 50 species, which are roughly equally distributed between the Old and New World deserts, but not in the intervening regions (amphitropical range). Great heterogeneity in the substitution rates of Gnetales (Ephedra, Gnetum, and Welwitschia) has made it difficult to infer the ages of the major divergence events in Ephedra, such as the timing of the Beringian disjunction in the genus and the entry into South America. Here, we use data from as many Gnetales species and genes as available from GenBank and from a recent study to investigate the timing of the major divergence events. Because of the tradeoff between the amount of missing data and taxon/gene sampling, we reduced the initial matrix of 265 accessions and 12 loci to 95 accessions and 10 loci, and further to 42 species (and 7736 aligned nucleotides) to achieve stationary distributions in the Bayesian molecular clock runs. Results from a relaxed clock with an uncorrelated rates model and fossil-based calibration reveal that New World species are monophyletic and diverged from their mostly Asian sister clade some 30 mya, fitting with many other Beringian disjunctions. The split between the single North American and the single South American clade occurred approximately 25 mya, well before the closure of the Panamanian Isthmus. Overall, the biogeographic history of Ephedra appears dominated by long-distance dispersal, but finer-scale studies are needed to test this hypothesis

    Arctic science education using public museum collections from the University of Alaska Museum: An evolving and expanding landscape

    No full text
    Alaska faces unique challenges in STEM (science, technology, engineering and mathematics) education, including limited accessibility to resources and learning opportunities, and a lack of place-based education resources. Museum education programs, traditionally focused on public outreach through docent-led tours, are playing an increasingly important role in both formal and informal aspects of STEM education to help address these challenges. The University of Alaska Museum (UAM) stands as a model in the Arctic region exemplifying how public natural history museum collections can be utilized to create active place-based learning experiences with the aim of increasing engagement in STEM literacy, and building connections between museums and communities. These efforts take many forms, including the development of teaching materials involving physical objects and/or online data from the open-access database ARCTOS, training pre-service teachers, and implementing citizen science projects. Because many UAM specimens and objects are from Alaska, they are easily incorporated into place-based education, thereby demonstrating how the Arctic environment is unique at local and regional scales. Here, we showcase several programs that are either unique to UAM, or part of larger national projects, and include exemplar teaching modules in order to provide learning opportunities in the Arctic region and other rural settings.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A Gneato nuclear genome

    No full text
    corecore