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Abstract 37 

Gnetophytes are an enigmatic gymnosperm lineage comprising three genera, Gnetum, 38 

Welwitschia and Ephedra, which are morphologically distinct from all other seed 39 

plants. Their distinctiveness has triggered much debate as to their origin, evolution, 40 

and phylogenetic placement amongst seed plants. To increase our understanding of 41 

the evolution of gnetophytes, and their relation to other gymnosperms and seed plants, 42 

we report here a high-quality draft genome sequence for Gnetum montanum - the first 43 

for any gnetophyte. By using a novel genome assembly strategy to deal with high 44 

levels of heterozygosity, we assembled > 4 Gb of sequence encoding 27,491 45 

protein-coding genes. Comparative analysis of the G. montanum genome with other 46 

gymnosperm genomes unveiled some remarkable and distinctive genomic features, 47 

such as a diverse assemblage of retrotransposons with evidence for elevated 48 

frequencies of elimination rather than accumulation, considerable differences in intron 49 

architecture, including both length distribution and proportions of (retro) transposon 50 

elements, and distinctive patterns of proliferation of functional protein domains. 51 

Furthermore, a few gene families showed Gnetum-specific copy number expansions 52 

(e.g. CesA) or contractions (e.g. LEA), which could be connected with Gnetum’s 53 

distinctive morphological innovations associated with their adaptation to warm, mesic 54 

environments. Overall, the G. montanum genome enables a better resolution of 55 

ancestral genomic features within seed plants, and the identification of genomic 56 

characters that distinguish Gnetum from other gymnosperms. 57 

 58 

Introduction 59 

The seed plants today are represented by five distinct lineages: the species-rich 60 

angiosperms (flowering plants, c. 352,000 species) and four gymnosperm lineages 61 

(which together comprise c. 1,000 species and encompass cycads, Ginkgo biloba, 62 

conifers and gnetophytes). It is apparent from their long fossil record (dating back to 63 

the Late Devonian c. 360 million years ago (Mya)) that considerably greater seed 64 

plant diversity existed in the past1. Nevertheless, widespread extinctions among many 65 
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gymnosperm lineages means that today’s gymnosperms are only a relic of their 66 

former diversity, and this has presented a major challenge for reconstructing 67 

evolutionary relationships between the extant lineages2. Probably the most 68 

controversial outstanding question in plant evolution is the phylogenetic position of 69 

gnetophytes3 (comprising the genera Gnetum, Welwitschia and Ephedra, Fig. 1) in 70 

relation to the other seed plant lineages. Apparent morphological similarities with 71 

angiosperms, such as vessel-like water conducting cells, double fertilization, and leaf 72 

morphologies with reticulate venation, have historically led to the proposition that 73 

gnetophytes form a group that is sister to angiosperms (termed the ‘Anthophyte 74 

hypothesis’)4,5. That hypothesis has, however, largely been rejected by molecular 75 

phylogenetic data and a deeper understanding of the developmental pathways that 76 

lead to similar morphological features. Nevertheless, the use of molecular data has 77 

also been problematic in inferring the exact phylogenetic position of gnetophytes, 78 

with topologies differing depending on the type of sequence data (e.g. plastid versus 79 

nuclear genes, nucleotide versus amino acid data) and analytical approach used (e.g. 80 

maximum parsimony, maximum likelihood, Bayesian, multispecies coalescent based 81 

methods)6-8. Consequently, several possible hypotheses have been put forward that 82 

place gnetophytes as sister to: (i) Pinaceae (‘Gnepine’ hypothesis); (ii) cupressophytes 83 

(‘Gnecup’ hypothesis); (iii) all conifers (‘Gnetifer’ hypothesis); (iv) all other 84 

gymnosperms; or (v) all seed plants9. Currently, the emerging consensus, based on 85 

both older and more recent studies, and recently released data from the 1KP initiative 86 

(see https://sites.google.com/a/ualberta.ca/onekp/, and Wickett et al. (8)), indicates 87 

that gnetophytes are sister to, or within, the conifers. 88 

So far, the availability of whole genome sequences for gymnosperms has been limited 89 

to conifers (specifically to Pinaceae)10-13 and G. biloba14, with no whole genome 90 

assemblies available for the two remaining major seed plant lineages - cycads and 91 

gnetophytes. This deficiency, together with the conflicting phylogenetic evidence for 92 

relationships among these groups, is impeding our understanding of genome evolution 93 

across all seed plants. Here, we present a high-quality draft genome of G. montanum, 94 
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the first for gnetophytes. The availability of this genome, as well as survey sequence 95 

data and transcriptome data from other vascular plants (including novel data from 96 

gnetophytes Ephedra and Welwitschia), enables us to compare genomic characters 97 

with G. biloba, conifers, angiosperms and non-seed plants. Comparisons within 98 

gymnosperms, and between gymnosperms and angiosperms, highlight the unique 99 

nature of the Gnetum genome, providing new insights into patterns of genome 100 

divergence across seed plants. 101 

 102 

Genome assembly and annotation 103 

The genome of G. montanum (2n = 44) is small compared with other gymnosperms 104 

(flow cytometry: 4.2 Gb / 1C; k-mer analysis: 4.11 Gb), and is highly heterozygous 105 

and rich in repeats (Supplementary Fig. 1a-c, and Supplementary Note 1). To 106 

overcome problems caused by repeats and heterozygosity, we generated deep 107 

coverage (~302 ×, Supplementary Table 1) Illumina sequence data and applied a 108 

novel genome assembly strategy (Supplementary Note 2, Supplementary Fig. 2) to 109 

assemble 4.07 Gb of sequence (contig N50 size = 25.02 kb, scaffold N50 size = 110 

475.17 kb, Supplementary Table 2), to which > 99% of genome reads, > 90% ESTs 111 

and > 99% of BACs were mapped (Supplementary Fig. 1d, e, Supplementary Table 3 112 

and Note 3).  113 

A total of 27,491 protein-coding genes were predicted from this assembly 114 

(Supplementary Table 4 and Note 4), 97% of which were supported by orthology (> 115 

50% coverage of high-scoring segment pair, Supplementary Fig. 3a) with existing 116 

protein sequences and/or RNA-seq data from multiple tissues (Supplementary Table 117 

5). A BUSCO analysis to assess the quality of the genome and annotation 118 

completeness suggested that 81% of the genes have been recovered (Supplementary 119 

Table 6). Unlike conifer genomes, which contain numerous pseudogenes15 (e.g. 8,328 120 

in Picea abies, 13,550 in Pinus taeda), many fewer were found in the G. montanum 121 

genome (3,122, Supplementary Note 5). The read depth distribution across genic 122 

regions (Supplementary Fig. 3b) suggested little sequence redundancy caused by 123 
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heterozygosity (see Supplementary Fig. 3c for further confirmation of gene assembly 124 

quality). 125 

 126 

Repetitive sequence dynamics 127 

Repetitive sequences have been shown to account for the major component of all 128 

gymnosperm genomes that have been sequenced to date11-14, with diverse and ancient 129 

transposable elements (TEs), especially LTR retrotransposons (LTR-RTs), being 130 

particularly prevalent. Overall, the repetitive element content of G. montanum was 131 

also high (85.9%) and dominated by LTR-RTs (especially gypsy-like elements), which 132 

comprised 77.4% of the genome (Supplementary Table 8 and Supplementary Note 6). 133 

The genome assembly of G. montanum is likely to be sufficient to represent most of 134 

the LTR-RTs, since their length is typically around 25 kb16, whilst 90% of the 135 

scaffolds are larger than 34 kb. Phylogenetic reconstructions of the reverse 136 

transcriptase domains of LTR-RTs in G. montanum and P. taeda revealed that most of 137 

the gypsy- and copia-like elements in G. montanum were restricted to just a few clades, 138 

representing only a small minority of the diversity encountered in P. taeda 139 

(Supplementary Fig. 4, Supplementary Note 6).  140 

Comparative analyses of repeats identified by RepeatExplorer using survey sequence 141 

data from multiple gnetophytes (G. montanum, G. gnemon, W. mirabilis and 142 

E. altissima) and P. taeda revealed substantial differences in the abundance of the 143 

major repeat classes (Supplementary Fig. 5a, Supplementary Table 9 and 144 

Supplementary Notes 1, 7). Further, the majority of individual repeat types (repeat 145 

clusters in RepeatExplorer) were shown to be species-specific (i.e. containing 146 

Illumina reads from just one species, data not shown). The species-specific nature of 147 

the repeat profiles probably reflects the long estimated divergence times between 148 

species (e.g. the two Gnetum species likely diverged between c. 25 Mya and 75 149 

Mya)17,18.  150 

Previously, it was reported from conifers and G. biloba that LTR-RTs have 151 
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accumulated steadily over the last c. 25 Mya, especially between 16-24 Mya, a 152 

process contributing to their large genome sizes11,12,14. This interpretation is consistent 153 

with the data here (Supplementary Table 10), which shows that most LTR-RTs in 154 

conifers are intact (solo LTR / intact LTR ratio ranged from 0.16:1 to 0.72:1, 155 

Supplementary Table 10). It is notable that the solo LTR / intact LTR ratio was 156 

substantially higher in G. montanum (~1.94:1), which together with its small genome 157 

and similar profile of accumulation (Supplementary Fig. 5b), suggests higher 158 

frequencies of LTR-RT elimination than amplification compared with G. biloba and 159 

conifers.  160 

Most angiosperm genomes analysed to date have far fewer ancient repeats and less 161 

divergent LTR-RT subsets than conifers and G. biloba, presumably due to more 162 

efficient elimination and replacement processes operating within these angiosperm 163 

genomes19 (e.g. in Oryza sativa the half-life of LTR-RTs is estimated to be less than 164 

five million years20, leading to “genome turnover”21). However, an exception to this 165 

pattern has been observed in Amborella trichopoda. The genome of this species is 166 

considered to have retained many features that were likely present in the ancestral 167 

angiosperm genome22. It is notable that its repeat content13 and lower abundance of 168 

intact LTR-RTs (i.e. solo LTR / intact LTR ratio = 2.43/1.0; Supplementary Table 10) 169 

is similar to that observed in G. montanum. These observations suggest that neither A. 170 

trichopoda nor G. montanum genomes have experienced recent, extensive (retro) 171 

transposon activity, although they continue to eliminate repetitive sequences. Both 172 

these species seem to differ from conifers and G. biloba with respect to the dynamics 173 

of repeat accumulation11,12,14, and from other angiosperms in terms of the levels of 174 

repeat amplification/removal. 175 

 176 

Intron morphologies 177 

Although intron size has been positively correlated with genome size across 178 

eukaryotes as a whole23, this trend does not translate well across broad and some 179 

narrow taxonomic distances in seed plants (Fig. 2a). Previous studies of G. biloba14 180 
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and conifers11,12 have reported larger introns than angiosperms, probably arising from 181 

the long-term, steady amplification of LTR-RTs (Fig. 2b), as also observed here, 182 

where LTR-RTs account for 51% and 59% of the large intron sequences in P. taeda 183 

and G. biloba, respectively (Fig. 2a, Supplementary Table 12). The evolution of these 184 

large introns may have arisen from similar repeat accumulation processes that are 185 

operating across the genome as a whole.  186 

When comparing these observations with introns of G. montanum, it is apparent that 187 

their introns are substantially smaller (minimum, mean and maximum intron lengths) 188 

than those of P. taeda and G. biloba (Fig. 2a, see also statistics test in Supplementary 189 

Table 11). In addition, the repeat composition of G. montanum’s introns is dominated 190 

by both long interspersed nuclear elements (LINEs) as well as LTR-RTs, rather than 191 

predominantly LTR-RTs, as in conifers and G. biloba (Fig. 2b, Supplementary Table 192 

12). The correlation between smaller intron sizes and smaller genome size in G. 193 

montanum compared with conifers and G. biloba may reflect the repeat dynamic 194 

processes operating across its genome as a whole. In contrast, the variable length 195 

distributions of introns in angiosperms suggest that the evolution of repeats in their 196 

introns do not necessarily reflect the repeat dynamics observed across the rest of their 197 

genomes24. In the highly dynamic repetitive genome of Z. mays, the profile of repeats 198 

across the genome25 and within the whole intron set (Supplementary Fig. 6a) both 199 

suggests many recent insertions. However, in A. trichopoda, the intron sizes are 200 

overall larger, and the genome size smaller than in Z. mays (Fig. 2a, b). In addition, an 201 

analysis of introns in A. trichopoda and G. montanum highlighted a closer similarity 202 

to each other (in terms of length distributions, repeat composition and divergence) 203 

than either species has to conifers and G. biloba, despite a 4.8-fold difference in their 204 

genome sizes (Fig. 2a, 2b, Supplementary Table 12).  205 

Previous comparisons of orthologous introns have led to the suggestion that the 206 

expansion of introns occurred early in the evolutionary history of conifers12. 207 

Comparisons of orthologous introns (with identical adjacent exons) between P. taeda 208 

and G. biloba showed that introns identified as being long (> 6 kb) in P. taeda were 209 
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also typically long in their orthologues in G. biloba, containing, in both cases, 210 

abundant LTR-RTs (both gypsy- and copia-like elements, Fig. 2c). These features 211 

were likely to have been present in their most recent common ancestor (MRCA). 212 

Using similar approaches to analyse the length and repeat content of 4,348 213 

orthologous introns of G. montanum shared with P. taeda (Supplementary Note 8) 214 

highlighted notable differences. Whilst the length of exons remained similar, a 215 

substantial fraction of orthologous genes had longer introns in P. taeda 216 

(Supplementary Fig. 6b). The introns identified as ‘short’ in P. taeda comprised c. 4% 217 

repeats, rising to c. 56% in ‘long’ introns, largely through the accumulation of 218 

LTR-RTs (especially copia elements) (Fig. 2d, Supplementary Table 13). In contrast, 219 

introns in G. montanum that are orthologous to the ‘long’ introns of P. taeda (36% of 220 

introns analysed) showed high proportions of LINEs. As with comparisons of all 221 

introns, pairwise comparisons of orthologous introns in G. montanum and A. 222 

trichopoda again showed some similarities in their introns, with both species having 223 

abundant LINEs (Fig. 2e). Collectively, these data reveal a different repeat dynamic 224 

within introns of G. montanum compared with the other gymnosperms. 225 

 226 

(‘Lack of’) Whole genome duplication (WGD) 227 

All angiosperms are reported to have undergone at least one round of ancient WGD, 228 

and in many lineages WGDs are recurrent and ongoing26. In addition, a WGD event 229 

has been proposed at the base of all seed plants c. 341 Mya (= zeta WGD27), although 230 

the underlying evidence for these two ancient WGD events has been recently 231 

questioned28. In gymnosperms, WGDs have been reported for conifers, G. biloba and 232 

cycad (a likely shared WGD)14,29,30. Although recent polyploidy seems common in 233 

extant Ephedra31, evidence for ancient WGDs in gnetophytes is missing 234 

(Supplementary Note 9 and Supplementary Fig. 7), except for a WGD in Welwitchia 235 

which likely occurred after the divergence of its lineage from that leading to Ephedra 236 

(Supplementary Fig. 7)29. If indeed the ancient zeta WGD is shared by all seed plants, 237 

the absence of evidence for this event in gnetophytes is best explained by their faster 238 
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rates of gene evolution compared with other gymnosperms32,33, erasing all evidence of 239 

this more than 300 million year old event (Supplementary Note 9 and Supplementary 240 

Fig. 7).  241 

 242 

Organization of functional protein domains 243 

To characterize the patterns of functional diversification in gene domains across land 244 

plants, we used principal component analysis (PCA) to analyse the number of pfam 245 

domains (conserved protein domains) in multiple species (Supplementary Note 10, 246 

Supplementary Table 13). Our approach showed that angiosperms formed a discrete 247 

cluster that was separate from the gymnosperms (Fig. 3a), with G. montanum being an 248 

outlier. Indeed, heatmaps compiled from the pfam data that contributed most (top 10%) 249 

to PCA1 and PCA2 showed that G. montanum formed a clade with the lycophyte S. 250 

moellendorffii and the moss Physcomitrella patens (Fig. 3b), whilst the 251 

non-gnetophyte gymnosperms formed a separate clade (Fig. 3b). 252 

Given the distinct distributions of G. montanum, non-gnetophyte gymnosperms and 253 

angiosperms in the PCA analysis, the data suggest that significant functional 254 

diversification of the conserved protein domains has occurred since these major 255 

lineages split. It may be surprising given the long divergence times (c. 300 Mya)2, that 256 

G. biloba and conifers retain similar conserved domain organizations (with similar 257 

eigenvector values). This could reflect their relatively low substitution rates (on 258 

average 7 × lower) compared with angiosperms33.  259 

An analysis of the pfam domain expansions that contributed most to the PCA1 and 260 

PCA2 distributions amongst angiosperms (except A. trichopoda). included genes 261 

associated with flower and organ development (Supplementary Table 15). In contrast, 262 

non-gnetophyte gymnosperms showed large-scale specific expansions of pfam 263 

domains in genes associated with defence and secondary metabolism, as previously 264 

suggested (Supplementary Table 16)10,11. The clustering of G. montanum with 265 

non-seed plants in the heatmap (Fig. 3b) was a surprise, and may indicate the 266 



 11

approach has identified proteins that have diverged very little since the MRCA of seed 267 

plants. Nevertheless, such an explanation is at odds with the hypothesis that the genes 268 

of gnetophytes have diverged rapidly, given their comparatively high substitution rate 269 

compared with other gymnosperms33.  270 

 271 

Growth form (shrubs and lianas) and leaf morphology 272 

Gnetophytes differ from other extant gymnosperms in growth form, with the unusual 273 

and distinct form of Welwitschia, the shrub habit of Ephedra and the shrub and liana 274 

habit and specialized leaf morphologies of Gnetum34. Cellulose synthase (CesA) and 275 

cellulose synthase-like (Csl) genes are considered to play a role in influencing the 276 

biomechanical properties of the cell35, hence potentially the distinctive growth forms 277 

of gnetophytes are associated with the divergence of these genes. To explore this 278 

hypothesis, CesA and Csl family members were examined in G. montanum and 279 

compared with those in other seed plants. The total number of CesA and Csl family 280 

members ranged about 3-fold amongst the seed plants analysed (P. abies, P. taeda, A. 281 

trichopoda, A. thaliana and O. sativa). However, only G. montanum showed a large 282 

expansion of the CslB/H gene subfamily (to 20 genes, Supplementary Table 17), 283 

involving tandem duplications (Supplementary Fig. 9), and accounting for two-thirds 284 

of its total Csl gene repertoire. Furthermore, transcriptome analysis showed that these 285 

CslB/H genes were differentially expressed in leaves, stems and roots of G. montanum, 286 

supporting an association with distinct growth forms and leaf morphologies 287 

(Supplementary Fig. 9). In contrast, all other species analysed, including Welwitschia 288 

and Ephedra, were seen to have only 1-6 CslB/H genes (at least based on 289 

transcriptome analysis) (Supplementary Note 11, Supplementary Table 16, 290 

Supplementary Fig. 8).  291 

Another gene family associated with leaf morphology and development is the WOX 292 

(WUSCHEL-related homeobox) family36. Recent studies have shown that the 293 

conserved family members WOX3 and WOX4, which play a role in leaf 294 

development, show diffuse WOX3 expression at the leaf bases of Arabidopsis and 295 



 12

Gnetum, with such patterns being associated with the distinctive reticulate venation 296 

observed in their leaves37. Two unusual paralogues, GgWOXX and GgWOXY, were 297 

previously reported to occur only in gnetophytes37, and this is confirmed here in 298 

phylogenetic reconstructions of gene family members (Supplementary Note 12, 299 

Supplementary Fig. 10). These paralogues are unlikely to have arisen by 300 

Gnetum-specific gene amplifications, as this would group them with other Gnetum 301 

paralogues. Alternatively, these genes may correspond to ancestral seed plant 302 

sequences that have been lost in other plant lineages. Potentially the different patterns 303 

of gene loss, retention and amplification compared with other gymnosperms may be 304 

associated with their distinctive growth forms.  305 

 306 

Vessels 307 

The presence of vessel-like water-conducting cells, morphologically distinct from 308 

tracheids, is another feature that sets gnetophytes apart from other gymnosperms. 309 

However, there has been long-standing debate as to whether gnetophyte “vessels” are 310 

homologous to the “vessels” of angiosperms.  In angiosperms, 311 

VASCULAR-RELATED NAC-DOMAIN (VND) proteins VND1-7 are members of 312 

the NAC domain class of transcription factors, VND7 being a master regulator of 313 

vessel formation in Arabidopsis thaliana38, and VND1-6 being upstream regulators of 314 

VND739. Although five NAC domain genes were identified in the genome of G. 315 

montanum, no orthologues of VND7 or VND1-3 in the sister clade were identified, 316 

consistent with previous analyses of other gymnosperms12, and suggesting that these 317 

proteins are restricted to angiosperms (Supplementary Fig. 11). Nevertheless, Gnetum 318 

does share the VND4-6 clade with angiosperms and other gymnosperms. Furthermore, 319 

A. trichopoda, which lacks angiosperm vessels, also lacks orthologues of VND1-3, but 320 

it does have VND7 (Supplementary Fig. 11), indicating that the ability to form vessels 321 

may have occurred after angiosperms diverged. Taken together, these data suggest a 322 

greater dependency of vessel development on VND1-3 than is apparent from 323 

experiments on A. thaliana. The most parsimonious explanation of our data is that 324 
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angiosperm vessel formation requires genes from the VND7 clade (and potentially its 325 

sister clade VND1-3), and that gymnosperms, including gnetophytes, which lack 326 

sequences from both these clades cannot form structures that are homologous to 327 

angiosperm vessels. Such an interpretation supports Carlquist’s40 morphological 328 

interpretations of vessels. It is therefore most likely that different molecular 329 

mechanisms underpin the origin and development of vessels in Gnetum and 330 

angiosperms. Indeed, these new molecular data support the hypothesis based on 331 

morphological studies that Gnetum vessels are actually more closely related to conifer 332 

tracheids than angiosperm vessels and that vessels in the two groups are convergent 333 

characters40. 334 

 335 

Water stress 336 

Extant species of Gnetum are unusual amongst gymnosperms in being restricted to 337 

warm, mesic habitats41, this contrasts to conifers that are adapted to cold and 338 

water-stressed environments. An analysis of genes involved in water and cold stress 339 

revealed some substantial differences between conifers and Gnetum. The Late 340 

Embryogenesis Abundant protein (LEA) gene family encodes crucial proteins that are 341 

involved in protecting plants from desiccation or osmotic stresses associated with low 342 

temperature42,43. An analysis of LEA family members suggests that some members 343 

have been reduced in number in Gnetum or expanded in conifers (e.g. LEA-3), or lost 344 

completely in Gnetum (i.e. LEA-4, 5, 6). In addition, dehydrins, which play a role in 345 

the response to cold/drought44, had only two members in G. montanum, compared 346 

with 38 in P. abies, 28 in P. taeda and 3-15 in angiosperms (Supplementary Table 19). 347 

Further analysis of the G. montanum genome also revealed relatively few gene family 348 

members of the AP2 domain containing protein families, which are involved in the 349 

cold stress response45,46, and GPX and GST families, involved in the oxidant stress 350 

response47,48. Taken together, these data appear consistent with the hypothesis that the 351 

ecological shift to a warm, wet forest habitat is associated with a relaxation of 352 

selection pressure on genes associated with water stress and low temperature.  353 
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 354 

Conclusion  355 

Here, we have described the assembly, annotation, and comparative analysis of the 356 

first gnetophyte genome, namely that of G. montanum. Its genome is particularly 357 

enigmatic given a phylogenetic position within or sister to conifers. It also carries 358 

genomic peculiarities that may reflect its morphological and ecological uniqueness 359 

amongst gymnosperms. Comparisons of these genome features with the genomes of 360 

conifers and G. biloba provide opportunities to predict the nature and direction of 361 

genomic change accompanying the evolution of the lineage leading to Gnetum (Fig. 362 

4). Assuming that gnetophytes do indeed form a clade that is sister to, or within, the 363 

conifers, the following genomic features can be predicted to have been present in the 364 

MRCA of the gymnosperms, as observed in G. biloba14 and conifers11,12: (1) A large 365 

genome size (1C > 10 Gb) comprised predominantly of a heterogeneous set of large 366 

numbers of LTR-RTs associated with low levels of repeat deletion14; (2) Long introns 367 

predominantly shaped by insertions of LTR-RTs (gypsy and copia elements); (3) Pfam 368 

domains that show a profile distinct from angiosperms; If this is so, and assuming a 369 

common ancestry of gnetophytes and conifers, these genomic characters, or their 370 

signatures, have subsequently been lost or diverged considerably in the lineage 371 

leading to Gnetum. This most likely involved the following genomic processes: (1) 372 

Genome downsizing, leading to the relatively (for a gymnosperm) small genomes of 373 

Gnetum species (1C= 2.25-4.11 Gb). This is supported by the high ratio of solo LTR / 374 

intact LTR-RTs observed in the genome of Gnetum compared with conifers, and is 375 

indicative of the activity of recombination-based processes, which can eliminate DNA 376 

from the genome. Similar processes leading to genome downsizing have also been 377 

reported in many angiosperms, resulting in small genomes despite the occurrence of 378 

multiple rounds of polyploidy detected in many lineages49; (2) Reduction in the size 379 

of introns in G. montanum and a replacement of many of the LTR-RTs repeats with 380 

LINEs to give rise to introns that are more similar to those of, for instance, A. 381 

trichopoda than to other gymnosperms; (3) Elevated rates of sequence divergence 382 
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causing the erosion of a hypothesised shared seed-plant WGD event and leading to a 383 

pattern of Pfam domains, which is distinct from the remaining gymnosperms; (4) 384 

Expansion and contraction of specific gene families associated with adaptation to new 385 

ecologies. 386 

387 
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Methods summary 388 

The sequenced G. montanum is a single mature female individual growing naturally 389 

in Fairy Lake Botanical Garden, Shenzhen, China. Genome sequences were generated 390 

using an Illumina platform and assembled with a novel hierarchical assembly strategy. 391 

Gene annotations were determined by integrating results from both de novo prediction 392 

approaches and alignment-based methods based on orthology and transcriptomic data. 393 

RNA-seq was performed using an Illumina platform. All methods and bioinformatic 394 

analyses are detailed in the Supplementary Information. 395 

 396 

Data availability 397 

The G. montanum genome project has been deposited at the NCBI under the 398 

BioProject number PRJNA339497. The whole genome sequencing data were 399 

deposited in the Sequence Read Archive (SRA) database under the accession number 400 

SRX2052734, SRX2098865, SRX2099144, SRX2114825, SRX2114827, 401 

SRX2134147, SRX2134160, SRX2134177, SRX2134180, SRX2134596, and 402 

SRX2134624. And the G. montanum assemblies, gene sequences, and annotation data 403 

are also available at the DRYAD website. The data or related program scripts that 404 

support the findings of this study are available from the corresponding author upon 405 

request.406 
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Figure Legends 577 

 578 

Fig. 1 | Morphological variation and geographical distribution of gnetophytes 579 

and some other gymnosperms. Top row from left to right, female cones of Gnetum 580 

montanum, male cones of Welwitschia mirabilis and female cones of Ephedra 581 

equisetina (Bar = 5 cm). Below, pantropical distribution of the three gnetophyte 582 

genera, compared with three conifer species that are most abundant at higher latitudes 583 

and altitudes. The range of genomes sizes (1C-values) found in the three genera 584 

comprising gnetophytes and the three conifer species are also shown (data taken from 585 

http://data.kew.org/cvalues/ and unpublished data). 586 

 587 

Fig. 2 | Comparative analysis of seed plant intron morphologies. (a) Intron length 588 

distributions and genome sizes (1C-values, depicted by the relative circle size) are 589 

shown for nine representative seed plants. (b) Distribution of sequence divergence for 590 

four types of transposable elements (TEs) in introns of A. trichopoda, G. montanum, 591 

P. taeda, and G. biloba. The data show that TEs in G. montanum and A. trichopoda 592 

are more diverse than in P. taeda and G. biloba. The latter two species also show a 593 

peak at around 10% sequence divergence probably reflecting a pulse of LTR-RT 594 

expansions. (c), (d) and (e), Comparison of orthologous introns between P. taeda (Pta) 595 

vs. G. biloba (Gbi) (c), P. taeda (Pta) vs. G. montanum (Gmo) (d) G. montanum 596 

(Gmo) vs. A. trichopoda (Atr) (e). Two orthologous intron sets that differed more than 597 

two-fold in length were examined, i.e. ‘short’ introns = 0.5-3 kb and ‘long’ introns ≥ 598 

6 kb. Orthologous introns that were ‘long’ in one species were also found to be ‘long’ 599 

in the other species of the pair. Analysis of the TEs in orthologous introns showed the 600 

‘long’ introns of G. montanum and A. trichopoda carried a high proportion of LINEs, 601 

contributing to intron expansion. In contrast, gypsy and copia LTR-RT elements 602 

contributed most to intron expansion in P. taeda and G. biloba. 603 

 604 
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Fig. 3 | Genome-wide analysis to show the contrasting diversification of 605 

functional protein domains across land plants. (a) PCA analysis of the occurrence 606 

and number of pfam domains in multiple orthologous genes across land plants. 607 

Plotting PC1 against PC2 reveals that monocots and eudicots cluster together, as do 608 

conifers with G. biloba, whilst the remaining species are separate from these clusters. 609 

(b) Heatmaps reveal the ancestral coding repertories shared by S. moellendorffii and G. 610 

montanum. Different patterns of expansion and contraction of the pfam domains are 611 

seen for other gymnosperms and angiosperms (see Supplementary Table 7 for 612 

species name list and corresponding abbreviations). 613 

 614 

Fig. 4 | Prediction of patterns of genome divergence across seed plants. The origin 615 

and evolution of distinctive genomic features observed in G. montanum genome are 616 

inferred, assuming a phylogenetic placement of gnetophytes as sister to, or within 617 

conifers. The predicted features shared by respective lineages are marked by coloured 618 

circles. Likely whole genome duplication (WGD) events (red stars) and a putative 619 

WGD event (grey star) are shown.  620 
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