30,784 research outputs found

    Fast nonadiabatic dynamics of many-body quantum systems

    Get PDF
    Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. However, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. On the basis of the Bohmian trajectory formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without using the adiabatic Born-Oppenheimer approximation

    Highly nonlinear dynamics in a slowly sedimenting colloidal gel

    Full text link
    We use a combination of original light scattering techniques and particles with unique optical properties to investigate the behavior of suspensions of attractive colloids under gravitational stress, following over time the concentration profile, the velocity profile, and the microscopic dynamics. During the compression regime, the sedimentation velocity grows nearly linearly with height, implying that the gel settling may be fully described by a (time-dependent) strain rate. We find that the microscopic dynamics exhibit remarkable scaling properties when time is normalized by strain rate, showing that the gel microscopic restructuring is dominated by its macroscopic deformation.Comment: Physical Review Letters (2011) xxx

    Genetic and phenotypic divergence in an island bird: isolation by distance, by colonization or by adaptation?

    Get PDF
    Discerning the relative roles of adaptive and nonadaptive processes in generating differences among populations and species, as well as how these processes interact, is a fundamental aim in biology. Both genetic and phenotypic divergence across populations can be the product of limited dispersal and gradual genetic drift across populations (isolation by distance), of colonization history and founder effects (isolation by colonization) or of adaptation to different environments preventing migration between populations (isolation by adaptation). Here, we attempt to differentiate between these processes using island populations of Berthelot's pipit (Anthus berthelotii), a passerine bird endemic to three Atlantic archipelagos. Using microsatellite markers and approximate Bayesian computation, we reveal that the northward colonization of this species ca. 8500years ago resulted in genetic bottlenecks in the colonized archipelagos. We then show that high levels of genetic structure exist across archipelagos and that these are consistent with a pattern of isolation by colonization, but not with isolation by distance or adaptation. Finally, we show that substantial morphological divergence also exists and that this is strongly concordant with patterns of genetic structure and bottleneck history, but not with environmental differences or geographic distance. Overall, our data suggest that founder effects are responsible for both genetic and phenotypic changes across archipelagos. Our findings provide a rare example of how founder effects can persist over evolutionary timescales and suggest that they may play an important role in the early stages of speciation

    Systematic derivation of a surface polarization model for planar perovskite solar cells

    Get PDF
    Increasing evidence suggests that the presence of mobile ions in perovskite solar cells can cause a current-voltage curve hysteresis. Steady state and transient current-voltage characteristics of a planar metal halide CH3_3NH3_3PbI3_3 perovskite solar cell are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width ∌\sim2nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (∌\sim600nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamic are replaced by interfacial (nonlinear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.Comment: 32 pages, 7 figure

    Motion and homogenization of vortices in anisotropic Type II superconductors

    Get PDF
    The motion of vortices in an anisotropic superconductor is considered. For a system of well-separated vortices, each vortex is found to obey a law of motion analogous to the local induction approximation, in which velocity of the vortex depends upon the local curvature and orientation. A system of closely packed vortices is then considered, and a mean field model is formulated in which the individual vortex lines are replaced by a vortex density

    Exactly-Solvable Models Derived from a Generalized Gaudin Algebra

    Get PDF
    We introduce a generalized Gaudin Lie algebra and a complete set of mutually commuting quantum invariants allowing the derivation of several families of exactly solvable Hamiltonians. Different Hamiltonians correspond to different representations of the generators of the algebra. The derived exactly-solvable generalized Gaudin models include the Bardeen-Cooper-Schrieffer, Suhl-Matthias-Walker, the Lipkin-Meshkov-Glick, generalized Dicke, the Nuclear Interacting Boson Model, a new exactly-solvable Kondo-like impurity model, and many more that have not been exploited in the physics literature yet

    On the Nature of Incompressible Magnetohydrodynamic Turbulence

    Get PDF
    A novel model of incompressible magnetohydrodynamic turbulence in the presence of a strong external magnetic field is proposed for explanation of recent numerical results. According to the proposed model, in the presence of the strong external magnetic field, incompressible magnetohydrodynamic turbulence becomes nonlocal in the sense that low frequency modes cause decorrelation of interacting high frequency modes from the inertial interval. It is shown that the obtained nonlocal spectrum of the inertial range of incompressible magnetohydrodynamic turbulence represents an anisotropic analogue of Kraichnan's nonlocal spectrum of hydrodynamic turbulence. Based on the analysis performed in the framework of the weak coupling approximation, which represents one of the equivalent formulations of the direct interaction approximation, it is shown that incompressible magnetohydrodynamic turbulence could be both local and nonlocal and therefore anisotropic analogues of both the Kolmogorov and Kraichnan spectra are realizable in incompressible magnetohydrodynamic turbulence.Comment: Physics of Plasmas (Accepted). A small chapter added about 2D MHD turbulenc

    Motion of vortices in type II superconductors

    Get PDF
    The methods of formal asymptotics are used to examine the behaviour of a system of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero. The vortices then appear as singularities in the field equation and are analagous to line vortices in inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing the evolution of these singularities
    • 

    corecore