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Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs)
can cause a current—voltage curve hysteresis. Steady state and transient current—voltage
characteristics of a planar metal halide CH3NH3Pbl; PSC are analysed with a drift-diffusion
model that accounts for both charge transport and ion vacancy motion. The high ion vacancy
density within the perovskite layer gives rise to narrow Debye layers (typical width ~2 nm),
adjacent to the interfaces with the transport layers, over which large drops in the electric
potential occur and in which significant charge is stored. Large disparities between (I) the
width of the Debye layers and that of the perovskite layer (~600 nm) and (II) the ion
vacancy density and the charge carrier densities motivate an asymptotic approach to solving
the model, while the stiffness of the equations renders standard solution methods unreliable.
We derive a simplified surface polarisation model in which the slow ion dynamics are replaced
by interfacial (non-linear) capacitances at the perovskite interfaces. Favourable comparison is
made between the results of the asymptotic approach and numerical solutions for a realistic
cell over a wide range of operating conditions of practical interest.
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1 Introduction

Since the first use of methylammonium lead tri-halide perovskite as a sensitizer in a
dye-sensitized solar cell [15], and its subsequent incorporation into a novel thin film
solar technology as a bulk solar absorber [14,17], the efficiency of perovskite solar cells
(PSCs) has increased extremely rapidly from around 3% to above 20% [6], a level that is
comparable to the standard crystalline silicon devices. This increase, along with advances
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FiGURe 1. (Top) Band diagram showing that holes preferentially move from the perovskite to the
HTL and electrons to the ETL. (Bottom) Schematic of a planar PSC showing photogeneration and
transport of electrons and holes.

in the material properties and stability of PSCs, makes this area of photovoltaic research
a very hot topic [22,38].

Typically, PSCs contain a three-layer architecture consisting of a layer of semicon-
ducting perovskite absorber sandwiched between a semiconducting hole-transport layer
(HTL) and a semiconducting electron-transport layer (ETL), see Figure 1. These transport
layers are also referred to as selective or extraction layers or, alternatively, electron- and
hole-blocking layers. A common pair of hole- and electron-transport materials are Spiro-
MeOTAD (2,2'7,7 -tetrakis-(N,N-di-p-methoxyphenyl amine)-9,9’-spirobifluorene, here re-
ferred to as spiro) and titanium dioxide (TiO;), respectively. Absorption of light occurs
predominantly within the perovskite layer and is associated with the generation of an
exciton which, due to its weak binding energy (~50 meV) [16], rapidly dissociates into a
free electron in the conduction band, and a hole in the valence band, of the perovskite.
These charge carriers move both in response to random thermal excitations (diffusion)
and to internal electric fields (drift). The hole- and electron-transport materials are chosen
such that their band energies give rise to a built-in electric field across the perovskite
that separates the charge carriers. The field drives holes towards the HTL and electrons
towards the ETL, generating a current at biases between zero and open circuit. Further-
more, the conduction band energy in the HTL is significantly above that in the perovskite,
so that a potential barrier exists to the entry of electrons into this material from the
perovskite. Similarly, the valence band energy in the ETL is significantly below that in
the perovskite, so that a potential barrier exists to the entry of holes into this material
from the perovskite.

An unusual feature of PSCs is their long timescale transient behaviour occurring on
the order of tens of seconds. This behaviour is exemplified by so-called current-voltage
hysteresis [35] whereby apparent hysteresis loops are observed in current—voltage (J—V)
curves obtained by sweeping the voltage across a cell, from high to low and back again,
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A surface polarisation model for planar perovskite solar cells 3

and measuring the current as a function of voltage. From a practical point of view,
this hysteresis has led to some unfortunate consequences, including inflated reports of
power conversion efficiencies (PCEs) given that PCEs are often calculated from a current—
voltage sweep. Long timescale transient behaviour has also been observed in dark current
transients (whereby the cell is first held in the dark, then the applied voltage is suddenly
changed and the resulting current measured) [23]. More recently, very long timescale
transients lasting many hours have been observed in cell efficiency [9]. These decays in
PCE can be reversed by allowing the cell to recover in the dark. Various explanations
have been proposed for these transient behaviours, including (a) large trap state densities
close to the interfaces with the transport layers, (b) slow ferroelectric polarisation of the
perovskite material and (c) the motion of iodide (I7) vacancies within the perovskite
material [35]. As discussed in Richardson et al. [28], it is now widely accepted that
the only one of these mechanisms capable of explaining the data is iodide vacancy
motion.

Various approaches may be used to model PSCs ranging from atomistic density func-
tional theory (DFT) simulations, to drift-diffusion models of charge carrier and ion
motion, to lumped parameter device models (equivalent circuits). DFT calculations, while
perhaps the most fundamental approach, are so computationally intensive that they are
incapable of describing the behaviour of a full cell. In practice, they are used to obtain
estimates of macroscopic quantities, such as ion vacancy densities and mobilities, from the
atomistic structures of the materials forming the device [10]. In contrast, drift-diffusion
models, which are applicable on the nanometre length scale and upward, describe the
motion of electrons, holes and ion vacancies. Such models have been presented and solved
in a number of works [5,9,13,21,23,28, 30, 34,40]. However, it is notable that, with the
exception of two [23,28], all of these works use parameter values that are very far from
realistic. This may be ascribed to the extreme numerical stiffness of the problem owing
to very narrow (~2 nm) Debye (boundary) layers that form as a result of ion accumula-
tion/depletion at the edges of the perovskite layer. In order to overcome this difficulty,
Richardson et al. [28] adopted a combined numerical and asymptotic approach, in which
the electrical properties of the Debye layers are modelled by a non-linear surface (Debye
layer) capacitance, based on estimates for the equilibrium ion vacancy density and mobil-
ity obtained from DFT calculations performed by Eames et al. [10]. The purpose of that
work was to demonstrate that experimental J—J hysteresis data could be explained by
the motion of ion vacancies in the perovskite layer and so the derivation of the asymptotic
solution was not given there.

The aim of this paper is to systematically derive the asymptotic approach used in
the earlier work by Richardson et al. [28] and validate it against numerical solutions
to the full model. A similar approach has been used for (i) asymptotic derivations of
equivalent circuit models from drift-diffusion models [11,12,32] (in the context of organic
solar cells, PSCs and bipolar silicon devices, respectively); (ii) a matched asymptotic
analysis of np-diodes [24]; (iii) asymptotic derivations of the standard ‘regional’ models
of semiconductors from a drift-diffusion model [31]; (iv) multidimensional models of bulk
heterojunction solar cells [3,29]; and (v) the asymptotic analysis of quantum drift-diffusion
models [2]. Subsequent to Richardson et al. [28], Ravishankar et al. [26] published a
heuristic model similar to the surface capacitance model used in this earlier work, which
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4 N. E. Courtier et al.

they term a surface polarisation model. We argue that the systematic derivation of such
models from the underlying drift-diffusion equations, as here, has the significant advantage
of directly relating the surface capacitances to the device physics.

This work is set out as follows. In Section 2, we formulate the drift-diffusion model
for a PSC, non-dimensionalise and estimate the model parameters. In Section 3, we use
formal asymptotic methods, based on the parameter estimates made in Section 2, to derive
a hierarchy of simplified models to the full PSC model including the surface polarisation
model of Ravishankar et al. [26]. In Section 4, the results of the simplified models are
compared to numerical solutions of the full PSC model and finally, in Section 5, we draw
our conclusions.

2 Problem formulation

Here, we consider a perovskite absorber layer, sandwiched between an ETL and an HTL
(typically TiO, and spiro, respectively). We make the assumption that the transport layers
are sufficiently highly doped that they are effectively equipotential across their width and
take the same potential as their respective contacts. In the perovskite, in line with DFT
calculations on its chemical structure [10], we assume there exists a high density of mobile
anion vacancies, in addition to the charge carriers. The resulting dimensional model for
the perovskite layer (0 < x < b), following earlier work [28], is outlined below.

Dimensional model
Conservation of holes (density p) and conduction electrons (density n) is described by

op  19j, . op , p 0¢
% _ G R j=—gp, (L4 PP

ot g ox = p<ax+VT ox )’

on 10j, . on n 0¢

—— -2 —-G-R, j,=qD,|—-—=", 2.1
3t gox O R = (ax Vr ax> 1)

where G is the photo-generation rate; R(n,p) is the bulk recombination and thermal
generation rate (henceforth abbreviated to recombination rate); ¢ is the electric potential;
J» and j, are electron- and hole-currents, respectively; and V¢ = kT /q is the thermal
voltage. Similar equations for the conservation of positively-charged anion vacancies
(density P) and negatively charged cation vacancies (density N) take the form

oP  oF, oP P 3

T ! —_p, ([, L9

ot T % T +<ax+VTax>’

ON  0F, - ON N o¢

§+ Ox =0 Fu=-D- (ax Nz ax)’ (22)

where F, (and F,) are the fluxes of the positive (and negative) ion vacancies (as opposed
to the current fractions carried by these species). Both sets of equations couple to Poisson’s
equation for the electric potential

¢ ¢

@—E(N—P—I—n—p). (2.3)
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Boundary conditions at the edges of the perovskite, x = 0 (the interface with the ETL)
and x = b (the interface with the HTL) take the form

h=ngp P = Do
¢) — Vhi;Vap ¢ — Vbi;Vap
_ x =0, . x =b, (2.4)
Jp = —qR Jn = —qR;
Fn=0 Fn=0
Fp=0 Fp=0

where V,, is the applied voltage; V), is the built-in potential; R; and R, are the interfacial
charge recombination rates on x = 0 and x = b, respectively; and the carrier densities on
the interfaces are given by the expressions (see e.g., Nelson [20])

Here, g. and g, are the effective density of states in the conduction and valence bands
of the perovskite, respectively; ji, and fi, are the perovskite conduction and valence band
energies, respectively. In addition, we model the highly doped ETL and HTL as metals
in which Efr,, the HOMO energy level of the HTL (Spiro), and Ef,, the conduction band
energy of the ETL (TiO,), play the roles of the Fermi levels in these materials. These
equations are supplemented by initial conditions, which we choose as follows to ensure
charge neutrality,

pli—o =po, nli=o=no, Nl|=o=No, Pli—o=No. (2.5)

The built-in voltage

This quantity can be found from (2.1) with boundary conditions (2.4) by noting that, at
equilibrium, the photo-generation rate, applied voltage and electron- and hole-currents
are all zero (G =0, V,, =0 and j, = j, = 0). The equilibrium solutions for n and p have

the form
¢ ¢
=4 —— =B —_
p exp ( Ve ) n exp Ve )

in which the constants 4 and B are determined by the boundary conditions such that

P = Poexp _ oV n = np exp b _ Vo
0 Ve 2Vr )’ 0 Ve 2V )

Furthermore, since the rate of thermal generation and recombination must be equal
(R = 0) at equilibrium (see e.g., (2.7)), we require np = n?. It follows that

Vi = Vr log (’2@”) , (2.6)

i

which with the parameter estimates in Table 1, turns out to be 1V = 39V7.
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Table 1. Parameters for the device described in Section 2.2, where &y is the permittivity
of free space and DoS is an abbreviation for density of states. Here, o is calculated from
Loper et al. [18] based on light wavelength of 585 nm (close to the peak absorption of the
perouvskite layer ). Unless stated otherwise, the parameters are for the perovskite layer.

Symbol Description Value Source
T Temperature 298 K

Fon Incident photon flux 9.5 x 10 m2s’! [18,28]
o Absorption coefficient 6.1 x 10° m™! [18]

b Width 15-6x10""m [17,25]
Vi Built-in voltage 1V

i Conduction band level —3.7eV [33]

3. Conduction band DoS 8.1 x 10* m? [4]

2 Valence band DoS 5.8 x 10* m™ [4]

iy Valence band level —54 ¢V [33]
D, Electron diffusion coefficient 1.7 x 10~* m?s™! [36]
D, Hole diffusion coefficient 1.7 x 10~% m?s [36]
Dy Vacancy diffusion coefficient 2.4 x 1071 m?s! [10,28]
No Vacancy density 1.6 x 10" cm™ [41]

& Permittivity 24.1¢ [4]

Ty Electron pseudo-lifetime 3x 10712 [28]

Tp Hole pseudo-lifetime 9x 107105 [28]

gc TiO; conduction band DoS 8.1 x 10** m™ [4]

g Spiro valence band DoS 58 x 10* m? [4]

Era TiO; Fermi level —4.0eV [33]
Erq Spiro Fermi level —50eV [33]

Recombination and photo-generation

At the radiation intensities associated with sunlight, the bulk recombination rate within
the perovskite, R, is believed to be predominantly trap assisted (although at higher
radiation intensities bimolecular recombination becomes significant) [37]. It is therefore
appropriate to model bulk recombination by the Shockley—Read—Hall rate equation (see
e.g., Nelson [20] Section 4.5.5)

np —n?

= 1 2.7
T+ T,p + k3 (2.7)

where 7, and 1, are the pseudo-lifetimes of conduction electrons and holes, respectively,
and ks is a constant related to the pseudo-lifetimes and trap state energy level (typically
negligible to the other terms in the denominator of (2.7) when the cell is under illumina-
tion). Furthermore, Stranks et al. [37] suggest that bulk recombination is hole dominated
(tp > 14), an assumption which is in line with that made in Richardson et al. [28].
There is still no consensus on the relative importance of interfacial recombination (at
the interfaces between the perovskite and the transport layers) in comparison to bulk
recombination although we note that this may be sample dependent. For example, de
Quilettes et al. [8] note that recombination within the perovskite occurs predominantly
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A surface polarisation model for planar perovskite solar cells 7

at crystal boundaries, which implies the magnitude of bulk recombination is strongly
dependent upon the perovskite structure.

The photo-generation rate, G, is assumed to follow the Beer—Lambert law of light
absorption; with light entering the device through the ETL (TiO;). This has the form

G = Fypaexp (—ox), (2.8)

where F,, is the incident photon flux and « is the light absorption coefficient of the
perovskite.

2.1 Non-dimensionalisation

Dimensionless variables (denoted by a star) are introduced by rescaling (i) space with the
width of the perovskite layer; (ii) voltages with the thermal voltage; (iii) charge carrier
densities with the typical photo-generated charge density, IIp (see (2.10)); (iv) current
densities with the typical photo-generated current density, gF,;; and (v) ion densities with
the typical ion density, Ny. The rescaling reads

X = bx*, 4) = VT(Z’)*, Vap = VT¢*>
L= Tiont*a p = HOP*a n= Hon*a
jp = quhjp*y Jn = quhjn*a P = NoP~,
* D+N0 s D+N0 *
N = NoN*, Fp= 2R Fo= 2E
F F
G="G", R=TR", Ry, = FuR},. (2.9)

Here, L, is the Debye length calculated on the basis of the ion vacancy density and 7,
is the characteristic timescale for ion motion defined, respectively, by

L SVT 12 LDb
= _ 5 Ti = —
4=\ gNo oD

Furthermore, we take Il to be the characteristic charge carrier density required to remove
the photo-generated charge in the absence of an electric field
Fub
My = ~2=, (2.10)
D
where D is a typical carrier diffusivity. The non-dimensionalisation gives rise to the
following dimensionless quantities that characterise the system:

D+b Dp Dn _ no _ Po
V=", Ky = —&, Kp = —, n=—, = 75>
DL, "D D I P~
b? D_ ; L 11
"/ = = s A = 5 > Ni = L» /’{ = l; = 70,
D‘Cp D+ H() b N()
Vii Ty ks
Dy = —, Y = ab, = —, K5 = . 2.11
bi Vr o € T 3 HOTp ( )
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The dimensionless problem
The system of equations obtained by applying the rescaling (2.9) to the variables in

(2.1)-(2.8) is

— * _R* * — *
Vor Tae 9 TR b= ae TP e )

on*  djy — G R, 7= (Gn 7n*6¢ )5

Y at* B ax* ax* ax*
oP* 0F, . oP* L00*
o e O f!’_—(ax*“) 6x*)’
n — * — _A _ *
e Ao =0 F <6x* N ax*>’
az¢* 1 * * * *
oz = E IV P (=) (2.12)
w=n p*=p
*_¢b17¢* *_7¢b17¢*
¢ 2 ¢ 2
i =—qR; x* =0, ji = —qR* x* =1, (2.13)
Fr=0 Fr=0
p*=b n* =n, N* =1, P* =1 at t* = 0. (2.14)

The dimensionless recombination and generation rates (for a device under constant
illumination) are given by

R S L S G* = Yexp(—TYx*). 2.15
(n*,p") =y <n* pe Ks)’ exp(—1x") (2.15)

Henceforth, we drop the star superscript from the dimensionless variables.

2.2 Parameter estimates for real devices

A list of parameter estimates obtained from the literature is supplied in Table 1. Note that
Fyp, v, 7, and Dy are in line with the range of values found in the literature but have been
specifically chosen to give good agreement to the experimental J-J curves presented by
Richardson et al. [28]. Based on this data, the dimensionless parameters, corresponding
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A surface polarisation model for planar perovskite solar cells 9

to a cell with perovskite width b = 600 nm, are

J=24x1073, v=>58x10"1 5=21x10",

Kn =1Kp =1, A=0, e=33x1073,

p = 0.30, i = 20, Ni=86x107°,

y =24, K3 =8.6x107", Y =37. (2.16)

While, for a cell with perovskite width b = 150 nm, they remain unchanged except that

2 =1.0x 1072, v=14x10"1, 6=52x%x107%,
p=12 =82, Ni=34x1078,
y =0.15, K;=35x%x1078, Y =092.

For the range of possible perovskite layer thicknesses considered, it always holds that
0 < A < 1 and this observation motivates the asymptotic solution to the model considered
in the next section.

3 Asymptotic simplification of the model (6 < 1 < 1)

Here, we assume dimensionless parameter sizes consistent with (2.16) and in particular
require that 6 < A < 1. In this scenario, the problem for the anion vacancy density and
potential (P and ¢) decouples from that for the charge carrier densities (n and p) so that
a very good estimate of ¢ can be obtained by ignoring the contributions of n and p in the
last equation of (2.12). We shall further assume that the cation vacancies are effectively
immobile on the timescales of interest, reflected in the choice of 4 = D_/D, = 0. This
assumption, coupled to equations (2.12) and initial conditions (2.14), imply that the cation
vacancy density remains constant with N = 1.

3.1 The ion problem

A good approximation to the potential can be obtained from the ion vacancy dependent
equations in (2.12)—(2.14) at leading order, i.e.,

P o g (T,

ot 0x Ox Ox
sz‘f = %(1 - P), (3.1)
with
Plx=0 = y» Fplyo =0,
Plyet = — %2_ 2 Fpley =0,  Plp=1 (3.2)

Since 4 < 1, these equations can be further approximated by using asymptotic boundary
layer theory, in a similar vein to Richardson et al. [27]. In the limit A — 0, the solution can
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FIGURE 2. Schematic representation of the Debye layers and the solution for the electric
potential, ¢.

be subdivided into three regions consisting of a bulk (or outer) region which is separated
from the two boundaries by boundary layers of width O(4), see Figure 2. As is usual in
this type of problem, these boundary layers are termed either Debye layers or double
layers (we opt for the former usage).

Bulk region
Away from the boundaries (ie., for x > A and 1 — x >> 1), the variables P, F, and ¢ can
be expanded, in powers of A and o, as follows:

P=1+-, F=Fd+-. ¢=¢5+ . (3.3)

Substituting these expansions into (3.1), and assuming 6/ < 1, gives, at leading order,

(0) o
6'7:'17’0 =0 f(o) — _ ad)z) :
Ox ’ p0 ox

Note that correction terms in the expansions of P and ¢ are O(d) and O(d/1), respectively.
These arise from the presence of the O(d) charge carrier terms in Poisson’s equation (last
of (2.12)) and this is why the expansion breaks down if the value of either n or p becomes
comparable to O(//9). It follows that q&ﬁf}m =0 and hence that

Y = W_(1) (1 — x) + Wi (1)x, (3.4)

for arbitrary functions of time W_(t) and W, (¢). It follows, on substituting into (3.4), that
the leading order ion flux is given by

F = W_(t) — Wi(1). (3.5)

Downloaded from https://www.cambridge.org/core. University of Portsmouth Library, on 25 Apr 2018 at 10:23:27, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956792518000207


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792518000207
https://www.cambridge.org/core

A surface polarisation model for planar perovskite solar cells 11

The Debye layers
The asymptotic solution in the Debye layer about x = 0 is obtained by rescaling space in
the governing equations (3.1) and (3.2) via

x=A; (3.6)
and substituting the asymptotic expansions
P=POO+ ., F=Foo+-., oé=0¢C0O+ . (37

into the rescaled equations to obtain the leading order problem. The solution to which is
given in the appendix and can be summarised as follows: (A) the leading order potential,

gd)(C ,t), and vacancy distribution, P(gd)(( ,t), are both quasi-steady throughout the Debye
layer, (B) the vacancy distribution is in quasi-equilibrium and so is Boltzmann distributed
and (C) the potential satisfies a modified version of the Poisson—-Boltzmann equation. The
solution to this problem can be written in the form

PY(C 1) = exp(—0(L,V_(1))),
(1) = 0, V-(0) + W_(1), (3.8)

where W_ is the potential at the left-hand side of the bulk, to which ¢gd) matches as
{ — 400, and V_(t) is the potential drop across the Debye layer (see Figure 2). The
function 6({,V_) is defined by the solution 0(z,V) to the generic modified Poisson—
Boltzmann problem

0%0 0
@zl—e , 0|,=0 = =V, 0—0,z— oo (3.9)

Similarly, the asymptotic solution in the Debye layer about x = 1 is obtained by
rescaling space in the governing equations (3.1) and (3.2) using the transformation

x=1-21¢; (3.10)
and substituting the asymptotic expansions

into the resulting equations and solving at leading order. Once again this process is
described in detail in the appendix. As in the other Debye layer, the leading order
potential (ﬁg))(é, t) and vacancy distribution PéD )(é, t) can be written in the form

P3P (E,1) = exp(—0(&, Vi (1)),
0 (1) = 0(E, V(D) + W), (3.12)
where W, is the potential at the right-hand side of the bulk (to which (,Z)E)D) matches as

& — 400), V,(1) is the potential drop across this Debye layer (see Figure 2) and 6(&, V(1))
is once again a solution to the problem (3.9).
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12 N. E. Courtier et al.

In order to fully determine the leading order solutions in both Debye layers and the
bulk region, it is necessary to solve for the time-dependent functions V_, W_, V, and
W . The requirement that the leading order solutions in the Debye layers, (3.8) and (3.12),
satisfy the potential boundary conditions in (3.2) gives

Dy — D(t) Py — D(t)

W-)-V-=—-—, W)= Velt)=—-—— (3.13)

Charge conservation within the Debye layers

A further two conditions on these four functions can be obtained by matching the flux
of vacancies into the Debye layers with the leading order expansion of the vacancy
conservation equations in the Debye layers. This leads to solvability conditions (described
in appendix) which can be interpreted in terms of global conservation of charge within
the Debye layers. Since the leading order solutions for the vacancy densities within the
Debye layers are quasi-steady, the total (dimensionless) charge per unit area within each
Debye layer, Q, can be related to the potential drop across the layer, V), in the form of
a non-linear capacitance relation. Here, the charges per unit area contained within each
Debye layer (Q_ in that about x = 0 and Q, in that about x = 1) are defined, in terms
of the local Debye layer variables { and &, by

Q,=/O (P - 1)de, Q+=/O (P - 1)de, (3.14)

and, as shown in the appendix, are related to the potential drops across the Debye layers
(V— and Vy, respectively) via the capacitance relations

Q- =0(V-(1)), Qr =0(V4(1) (3.15)
where the function Q(V) is defined by

V2 (3.16)

Q(V) =sign(V) (2 (e¥ —1-V))
This relation is plotted in Figure 3.

Furthermore, since vacancies (and hence charge) are conserved, the rate of change of
the total charge per unit area within the Debye layers must equal the flux of (positively
charged) vacancies flowing into each layer from the bulk region. Since the vacancy flux
in the bulk region, ‘7:1(;0)’ is spatially independent, and given by (3.5), this observation
corresponds to the conditions

dQ_ a9y
T Wi(t) — W_(1), T W_(t) — Wi (o).
Alternatively, on eliminating W, and W_ in favour of V; and V_, we have the equivalent
conditions
dQ_
T [®pi — D(1) + V(1) — V4(0)],
d
% = &y — D(t) + V_(t) — V4 (1), (3.17)
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FiGURE 3. Charge density in the Debye layer, Q, versus the potential drop across it, V), defined by
(3.16), or equivalently (3.19).

which can be solved in conjunction with (3.15) and (3.16). Adding these two equations
together and integrating with respect to t implies that the total charge in the Debye
layers is conserved, ie., Q_(t) + Q4(t) is constant. This is to be expected given that
the predominant mobile charge carriers are the positive vacancies which cannot leave
the perovskite region. Furthermore, since the net charge arising from both positive and
negative vacancies will initially always be zero, it remains so for all time, i.e.,

Q_(1) = —Q4(1). (3.18)

At this stage, we can choose either to solve an ODE for V. (t) or one for Q. (t). Since
neither of these problems admit exact solution, we opt to solve for @, because this is
preferable from a numerical point of view. We do this by noting that the inverse of (3.16)
is

B _ 1
log, ( LambertWO(—exp(—(Q2/2+1)))>

V(Q) = for 0<0, (3.19)
log, (—LambertW _;(— exp(—(Q?/2 + 1))))
for Q9 >0,

where LambertWy(-) and LambertW_;(-) are the 0’th and —1’st branch of the Lambert
W function. On substituting the above functional relation in (3.17), together with (3.18),
we obtain a single ODE for Q. (t)

40,

= D PO+ V(=Q0) —V(Q4) (3.20)

The solution to (3.20) may be used to obtain the leading order bulk potential via (3.4),
that is,

(%, 1) = (1 —x) V(= Q4 (1) + L [® — D(1)])
+x (V(Q4(1) — L [y — @(1)]) - (3.21)
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14 N. E. Courtier et al.

Remark
The dimensional surface charge density (in the Debye layers), Q(dlm), is related to its
non-dimensional counterpart, Q, by

odim _ opN 0.

The uniformly valid approximation to ¢
We can now write down a uniformly valid approximation to ¢ that is valid throughout
the bulk and both Debye layers:

2

b (1= 20 (V- Qu + 10— 0001 ) + x (WQut0) - 3101 - 000}

+0 (3. V(=Q- (1)) + 06 (l‘ix,wgmn) : (322)

where the function 0(z,V) is defined implicitly in ( 15) in the appendix. The corresponding
uniformly valid asymptotic approximation for the anion vacancy density, P, is

P ~ exp (79 (%,V(fQAt)))) +exp <9 (IAX,V(Qm)))) “1. (323

3.2 Asymptotic approximation to the charge carrier equations

As we demonstrate in Section 4, the potential is well-approximated by the solution
to the ion problem (3.1) and (3.2) and is almost entirely unaffected by the carrier
distributions. Furthermore, since the Debye layers are extremely thin, the effects of both
photo-generation and recombination within these layers are negligible so that, from (2.12),
the electron and hole currents are to a good approximation spatially independent across
these layers,

M, 0=, P20, P = iP0).

Furthermore, in these narrow regions, electron and hole densities are in approximate
quasi-thermal equilibrium. In particular, in the Debye layers close to x = 0 and x = 1,

respectively,
ond N n(d)ad)gl) ap(D) N _p(D)a‘bg)D)
oC oC - 0¢ 0¢

Referring to the boundary conditions (2.13), we find that
1
n ~ fiexp (qﬁgd) - §(¢bi - <D)> near x =0,

1
PP ~ pexp <—¢E)D) — 5(@;,,» — @)) near x = 1.
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A surface polarisation model for planar perovskite solar cells 15

For the purposes of predicting the output current of the device, we need only determine
the carrier concentrations within the bulk region. Matching conditions on the bulk carrier
problems (for n and p) are obtained from the far-field behaviour of the Debye layer
solutions, namely,

d)

n) — fiexp(V_(t)) as { — +oo,

p®P) — pexp(—Vi (1)) as & — 4o0.
The appropriate boundary conditions on the bulk carrier densities are thus

n© = nexp(V_(t)) } " = pexp(=V4i(1)) }
! =0, ) AL GV 3.24
jO =R, V) =R, (324

The corresponding equations for the carrier densities in the bulk, as obtained from (2.12),
are, on taking the physically appropriate limit v — 0,

aj(a) 0 0 (0 ap((l) o

—a; =G — R(n"”,p"), J,(; =k, (ax —p )E(()O)> ’

Q) ) on'

aJ:C = _G —l'_ R(n(())a p(O)) H .]i(l()) = K” < ax + n(())E(()O)> ' (3.25)

where E(()O)(t) is the leading order bulk electric field defined by E(()O)(t) = —6(;58)) /Ox and,
from (3.21), is given by

EQN(t) = V_(1) = Vi(1) + Py — D(0). (3.26)

Hence, the asymptotic approximation to the charge carrier problem can be found from
the solution of (3.24) and (3.25) in which the electric field term, E(()”)(t), depends, via
(3.26), on the solution Q/(t) to the ion problem, through the relations V_ = V(—Qy)
and V; = V(Q,) (where the function V(-) is defined in (3.19)). Usually, the solution will
have to be obtained numerically because of the non-linearity of the recombination term.
Nonetheless, numerically solving this reduced problem is considerably less challenging than
directly tackling (2.12)—(2.14) because it excludes the Debye layers, over which the solution
varies very rapidly. Finally, we note that the net current density j©(t) = j\)(x,t)+ jl(,")(x, t)
is independent of the spatial variable x and so can be found simply by evaluating the
sum of the electron and hole current densities at any point in the domain.

3.3 An analytic solution in the limit ¢ — O with zero interfacial recombination

It is notable that the parameter € = 1,,/7, is typically small (we estimate, on the basis of
earlier work [28], € ~ 3.3 x 10~?), while the other parameters in the SRH recombination
term (2.15), N; and K3, are both very small. These observations lead us to set N; = 0,
K3 =0 and to investigate the small e limit. In which case, provided that p/n is not large,
R(n, p) can be approximated by

R(n,p) ~ yp. (3.27)
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If we restrict our interest to the case where interfacial recombination is negligible (i.e., if
we take R) = 0 and R, = 0), it follows that the equation for the hole density decouples
from that for the electron density (see (3.25)) and can be reformulated as the following
linear equation for p(©:

Ji opl® j©
= Yexp(—Yx) — vp@ _plogl) — _Jr
o xp(=Yx) —yp”, ox ~PEo o

These may be solved by eliminating jl(f’) from the above to obtain a second-order constant
coefficient linear inhomogeneous equation for pg’), namely,
2
o%p 0 op?) B ypt©

E =Y —Yx).
0x2 O dx Kp exp(—1x)

This can be rewritten in the form

2 (0) (0)
O — B0+ Ba0) L+ B0 = ~dexp(~T), (329)
where

EO) ((Eg°>(t))2 T4y /x,,) 2

piiny = o0 4 ; ,

1/2

(0) E1)? + 4

Balt) = Eoz(t) B (( 0 ( i V/Kp) ’

i=L (3.29)
Kp

On noting that E(()”)(t) = B1(t) + Pa(t), the boundary conditions (3.24) can be stated as

(0)
e CURY RO
Plx=1 = pexp(—V(1)). (3.30)
The solution to (3.28) and (3.30) is
p(o)(x )= — de”™ + A([)eﬁl(t)x + B(t)eﬁz(t)x (3.31)
’ (X + B1(0)(Y + Ba(t)) ’
where
— @ — @ = Bi() _ Ba(t)
A= BO=Fos.  DO=HOS e
Ao _ d (PD(Bi(t) + B2(t) + 1) = fu(t)e™ ")
A(t) = Bi(t)pexp(=V4(1)) — T+ RO+ 50 ,
A _ d (P O(B1(1) + Ba(t) + 1) — Pa(t)e™ )
B(1) = —Bat)p exp(— V(1)) - Y A AG] . (63
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A surface polarisation model for planar perovskite solar cells 17

An expression for the total current in the device
An expression for the hole current density jl(,") is found by substituting the solution (3.31)
for p') into (3.25); this gives

(o) _ _ —Yx (Y+ﬁ1(t) +ﬁ2(t))
= (de 0+ B(0)(X + fa(t)

= Bo(0) A@0)" O — Bi(1)B(1)e ) (3.33)

The total current J(t) = ji’(x, 1)+ (x,t) is determined from the condition that j{(1,1) =
0, which thus implies that J(t) = j{*)(1,1). It follows that

(Y + B1(1) + Ba(1))
(Y + B1()(Y + Ba(1))

0= -, (de? ~ RO~ BOBOS). (334

Asymptotic solution for the bulk electron density

In order to monitor whether this asymptotic solution breaks down, it is useful to derive

an asymptotic expression for the bulk electron density, n®), while recalling that we require
© /n® > € in order for the validity of the expansion. The equations and boundary

conditions for n' are, at leading order,

6n (©)

B+ B =0 ).
n')|—o = Rexp(V_(1)), (3.35)

in which we once again write E(() = f1+ p» and where ] (©) is given by (3.33). The solution
to this problem is

00 = V-0 1 IO ) oo
@
Kn K
+D(t) (e*Yx _ e*(ﬁl(f)H?z(l))X) +G(1) (eﬂn(t)x _ e*(ﬁl(l)Jrl?z(t))X)
FH(E) (P05 — OO (3.36)

where time-dependent functions D, G and H are given by

Dt) = Kp ( d(Y + Bi(t) + B2(2) >
Bil0) 1 Fald) — DX + B ONY + fal0)
O hOAD
90 == 0k + )
xpm(t)B(t)
e Bi(0) + 2520

H(t) = — (3.37)

4 Comparison between numerical and asymptotic solutions to the model

In this section, we compare the results obtained from (i) a numerical solution to the full
model, (2.12)—(2.14), to those obtained from (ii) a combined asymptotic/numerical ap-
proach, in which the ion problem is solved asymptotically as in Section 3.1, and from (iii)
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the special case described in Section 3.3, which is entirely based on asymptotic approxima-
tions. In particular, we show that the results from (ii) the combined asymptotic/numerical
approach, adopted in an earlier work [28], compare extremely favourably to (i) numerical
solution of the model.

4.1 Numerical methods

In approach (i), we use the method of lines. A detailed description of the numerical
scheme is given by Courtier et al. [7], here, we restrict ourselves to a brief outline. The
spatial derivatives in equations (2.12) are treated using a finite difference approach that is
second-order accurate in space, both on the internal and boundary points, and chosen in
such a way that conservation of species is also exact up to second order. After application
of the finite difference approximations, the problem is reduced to a system of differential
algebraic equations (DAEs) in which the ODEs arise from the evolution equations for
P, n, and p, in (2.12), and the algebraic equations are a result of Poisson’s equation for
the potential. Solving systems of DAEs presents a challenging numerical problem, which
we tackle using the odel5s routine in MATLAB [19]. Owing to rapid changes of the
solution curves within the narrow Debye layers, we find that the problem is sufficiently stiff
to require non-uniform grid spacing and the additional precision offered by Advanpix’s
Multiprecision Computing Toolbox [1].

In approach (ii), the system of equations requiring numerical treatment is that for the
charge carriers in the bulk, (3.24) and (3.25). Having taken the asymptotic limits o, 4
and v — 0, the remaining problem is a second-order boundary value problem (BVP).
Crucially, since asymptotic expressions have been derived for the narrow Debye layers,
only the solution in the bulk needs to be resolved numerically. This problem exhibits
significantly reduced stiffness and, as a result, a straightforward application of the bvp4c
routine in MATLAB [19] suffices.

4.2 Results

In Figures 4-7, we show results for a device characterised by the parameters given in
Table 1 with the perovskite layer width equal to 600 nm, corresponding to the set of
dimensionless parameters given in (2.16). All numerical calculations are performed on a
spatial grid consisting of 800 Chebyshev points.

Figures 4-6 show the internal state of a cell at five equally spaced values of time during
a variation of the applied voltage, in a scenario in which the cell is abruptly illuminated at
t = 0 s having been preconditioned in the dark with V,, = V};. For Figure 4, the applied
bias is varied smoothly from V,, = V}; at t =0 s to V,, = 0.8 V at t = 10 s (precisely,
Vap = Vi — 0.2 tanh (¢)/ tanh (10)). Plots show solutions at t = 2,4,6,8,10 s. For Figure 5,
the applied bias is instantaneously decreased from V,, = Vj; to V,, =0V at t =0 s and
held there for 4 s. Plots show solutions at t = 0.8,1.6,2.4,3.2,4.0 s. Finally, for Figure 6,
the applied bias is varied linearly from V,, = V) att =0 s to V,, = 1.25 V at t=10s.
Plots are for t = 2,4,6,8,10 s.

In Figure 7, comparison is made between current—voltage (J—V") curves calculated using
all three approaches and which model the experimental data presented by Richardson
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FIGURE 4. (a) Anion vacancy density, (b) electric potential, (c) electron concentration and (d) hole
concentration profiles across the perovskite layer of a cell during a smooth decrease of applied bias
from V,, = Vj; to 0.8 V. Insets focus on the left-hand (TiO,/perovskite) boundary. Arrows indicate
the direction of increasing time; black solid lines represent (i), the full numerical solutions, pink
dashed lines represent (ii), the combined asymptotic/numerical approach and green circles represent
(iii), the uniformly-valid asymptotic expansions from the fully asymptotic approach.

et al. [28]. In that paper, data is provided for two cells; here, we opt to model ‘cell 2’
and choose the colour scheme of Figure 7 for consistency with Figure 7(b) from [28].
The cell is preconditioned for 5 s at 1.2 V in the light before the J-V curve is measured.
The current is calculated at equally spaced intervals in time as the applied voltage is
varied at a constant rate from 1.2 V (forward bias) to 0 V (short-circuit) and back;
the four different scan rates are 50 mVs~!, 100 mVs~—!, 250 mVs~! and 500 mVs~l.
In panel (a), solutions calculated using (i) the fully numerical (solid lines) and (ii) the
combined asymptotic/numerical approach (dashed lines) are shown. Note that both of
these methods calculate currents based on the full SRH recombination rate, (2.7). While
in panel (b), solutions from (iii) the fully asymptotic approach are shown.

The agreement between the asymptotic and numerical results for electric potential and
ion vacancy density presented in Figures 4-6 is extremely close in all cases. This suggests
neglecting the effects of charge carriers (electrons and holes) on the electric potential is, in
the physically pertinent regime considered here, a very good approximation. Agreement
between the asymptotic and numerical results for the charge carrier densities (n and p) is
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FIGURE 5. As for Figure 4 but for a fast evolution in applied bias from V,, = V}; to 0 V.

very good but exhibits some relatively minor discrepancies, particularly, in the case of the
rapid transient (Figure 5).

The current-voltage curves produced in Figure 7, which follow typical experimental
protocols, show minimal deviation between asymptotic and numerical results and go a
long way to validating the approach we have adopted here as a useful tool in the study
of these devices.

Estimates for the size of the typical ion vacancy density, Ny, in a PSC vary and, while
our value is based on a reputable density functional calculation [10], we should allow for
considerable variations in this quantity. In particular, it is interesting to ask the question
of whether the asymptotic model we have derived still provides a good description of
the physics in the case where Ny is significantly smaller than our original estimate of
1.6 x 10" cm™3. In order to investigate this possibility, we consider the case where
Ny = 1.6 x 107 cm~? and compare solutions obtained using each of the three methods in
the case of a voltage transient identical to the one investigated earlier in Figure 4. As can
be seen in Figure §, the agreement between the solution to the asymptotic model and the
numerical solution of the full model is still extremely good despite 4 being 10 times larger
than in the original calculations (here, 2 = 2.4 x 10~2). This indicates that the asymptotic
approach taken in this work is robust with respect to significant variation in the size of
the ion vacancy density Ny and in particular is applicable to the range of ion vacancy
densities commonly encountered in the literature.
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FIGURE 6. As for Figure 4 but for a slow increase in applied bias from V,, = Vj; to 1.2 V.

4.3 Discussion

We have looked at three approaches to solving the drift-diffusion model (2.12)—(2.14).
Approach (i) is fully numerical and involves solution of the full problem. In contrast,
in approach (ii) (used previously [28]), we formally take the limits 4 — 0 (small Debye
length) and 6 — O (charge carrier concentration negligible in comparison to ion vacancy
concentration). The comparison between the results of these two approaches is extremely
favourable, as illustrated by the very small discrepancies in the J-V curves calculated
using both approaches, for a range of scan rates, in Figure 7(a).

The other main approximations to the drift-diffusion model that we make use of are
the quasi-steady carrier limit, v — 0 and the approximation of SRH recombination by
hole dominated monomolecular recombination, € — 0. The former limit (v — 0) and its
use, or otherwise, makes negligible difference to the results obtained. The latter, however,
is frequently problematic, despite the very small value of e (= 1/300) we use in the
simulations. This slightly surprising result is best illustrated by the significant differences
between J-V curves calculated using the fully numerical method (solid curves in Figure
7(a)) and those calculated using the fully asymptotic method in the limit ¢ — 0 (Figure
7(b)). Where there are significant differences between the two approaches this can be
ascribed to strong spatial variations in charge carrier concentrations across the cell,
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resulting in regions where n < O(ep) so that the approximation of R(n,p) in (2.15) by
R(n, p) =~ yp no longer holds.

5 Conclusion

In this work, we outlined a model for charge carrier transport and ion vacancy motion in
a tri-layer planar PSC (previously discussed in Richardson et al. [28]). Using parameters
extracted from the literature, we were able to identify two key small dimensionless
parameters that characterise the model: 4, which gives the ratio of the Debye length in
the perovskite to the width of perovskite layer, and o, the ratio of the typical charge
carrier (electron and hole) densities to the typical ion vacancy density. Based on the small
size of these parameters, we performed an asymptotic analysis of the model which showed
that: (a) the problem for the ion vacancy density and the electric potential is almost
completely independent of the charge carrier densities and (b) the decoupled problem
for ion vacancies and electric potential is well-approximated by the solution to a single
first-order ODE that describes the evolution of charge in the Debye layers (at the edge
of the perovskite) in terms of the current through a resistor and a non-linear capacitor in
series. In dimensional form, this simplified model states that the charge (per unit area) in
the right-hand Debye layer, Q,, evolves according to the equation

dQ+ _ qD+No (Vbi -V -V(Qs)+ V(—Q+)) (5.1)

dt Vr b

where the term in the brackets is the (uniform) electric field in the perovskite bulk (away
from the Debye layers) and V(Q) is the inverse to the non-linear capacitance relation

1/2
o) = SI’LVT sign(V) [2 (exp(V/VT) 11— ;}Tﬂ . (52)

d
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FIGURE 8. Equivalent to Figure 4 but for a cell with a lower vacancy density of 1.6 x 107 cm™.

A good approximation to the full model can then be obtained by solving this much
simplified problem for ion vacancy density and electric potential and using the resulting
electric potential as an input into the charge carrier equations. The resulting model can
sensibly be termed a surface polarisation model of charge transport because it describes
the effect on the current in a cell of the polarisation of the perovskite layer, as ionic charge
is transported from one of its surfaces to the other. In general, the simplified problem that
we are left to solve for the charge carrier densities is non-linear and so requires numerical
solution. However, in contrast to the problem for the ion vacancies and potential, it is
non-stiff and so this is not usually problematic. Moreover, parameter estimates suggest
that the Shockley—Read—Hall recombination term in the charge carrier equations can
be well-approximated by monomolecular hole dominated recombination (R(n, p) ~ yp).
This allows the charge carrier equations to be linearised and, in turn, solved analytically.
Where this is the case, an asymptotic solution to the entire model can be obtained from
the solution to the single first-order ODE discussed above.

In order to test the validity of the asymptotic method used to solve this model, we
compared our asymptotic results to the results of a numerical solution of the full model.
The latter was conducted using a recently developed numerical procedure [7] that is
able to accurately solve the full model in realistic parameter regimes. Where we used a
combined asymptotic/numerical approach (solving for the ion vacancy distribution and
electrical potential using the asymptotic model and solving for the charge carrier densities
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and currents numerically), we found extremely good agreement to the full numerical
solution. In the case where we additionally linearised the charge carrier equations and
solved them analytically, the comparison to the full numerical solution, while still good,
was less impressive.

The physics of PSCs is still far from fully understood and in order to improve this
situation, it is vital that drift-diffusion models and their solution techniques continue to
be developed. One obvious, and important, extension to the model discussed here is the
explicit inclusion of charge transport in the electron- and hole-transport layers on either
side of the perovskite. Such an extension will be able to elucidate how the choice of these
layers affects the cell’s transient behaviours. In particular, this extended model could be
used to investigate cell architectures giving rise to so-called low hysteresis behaviour and
would also be better able to account for interfacial recombination, see, for example [5,39].
Here, we assume cation vacancies are immobile, which is justified by the relatively short
timescales. However, it is believed that mobile methylammonium vacancies can lead to
slow (over the timescale of many hours) but reversible changes in efficiency [9].
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Appendix Solution for P and ¢ in the Debye layers

In the bulk region, we obtain a solution for the leading order vacancy density Pé") and
potential ¢{”, given by P\” = 1 and qﬁg’) = W_(t)(1 — x) + Wy(t)x. These expressions
satisfy the potential boundary conditions but in general cannot satisfy the flux boundary
conditions, see (3.2). In order to resolve this seeming paradox, we need to account for
narrow boundary layers (Debye layers) of width O(4) about x =0 and x = 1.
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Debye layer about x =0

Considering first the Debye layer about x = 0, we use the rescaling (3.6) to rewrite the
governing equations (3.1) and (3.2) in terms of the rescaled spatial variable {, yielding the
boundary layer equations:

oP  0F, _ 1(3P | 3¢

a‘l‘y—o, Fp = i(aC+PaC>’ (1)

%9

aTz_1—P, (2)
O — By

Plio=—5—". Fly=0, Pho=1. (3)

The expansions for P, ¢ and F, proceed as in (3.7) so that to leading order in (1), we
obtain the following equation for Péd):

d d
opy” +P(d)6d>§)’ _o
oC 0¥ ’
This has the solution
P(gd) = exp (W(t) — g“) , (4)

for some as yet undetermined function of time, W (t).

Matching to the outer
In order for the leading order Debye layer solution to match to the leading order outer
solution, through (3.3) and (3.4), we require

P =1, ¢ = W_(t), {— +oc. (5)

Applying the matching condition (5) to the solution (4) determines a relation between
the arbitrary functions W (t) = W_(t) motivating us to eliminate one of them by writing

P =exp (W_() - o) . (6)
On substituting this expression into (2) balanced at leading order, we find
d
Oy
a2

= 1—exp (W-(0) - ¢(") , (7)
which satisfies boundary conditions obtained from the leading order terms in (3) and
from ( 5), namely

P

b, —
90 l-o=—5—. 9 = W_(0), { = +oo. (8)

The corresponding expansion for the total charge per unit area in the left-hand Debye
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layer, @_ (defined in (3.14)) is

Q7=Q7,0+"'5

and, by substituting this into (3.14), we obtain

d
Qo= [ (e (Wir— ") ~1)ac. (9)
We can reformulate the problem for (]5{)”1), given by (7) and (8), in a generic form by
writing
0 (L 1) = 0 V- (1) + W(1), (10)
where V_(t) represents the potential gained across the Debye layer, ie., V_ = [ gd)]go

(note that with this definition 0 = —log, Péd)). It is then straightforward to show that the
function 6(z, V) must satisfy the generic modified Poisson—-Boltzmann problem

%0 -0
@—l—e , (11)
Ol,—0=-V_(t), 6 —0asz— +oco. (12)

Furthermore, in order that ¢gi)|c:0 = %(@bi — D),

Dy — P
2

W_(t) = +V_(1). (13)
Thus, if we are able to determine V_(t), we can determine the unknown function W_(¢)
in the leading order outer solution for the potential in (3.4).

It is straightforward to obtain a first integral to the autonomous equation (11) in the
standard fashion by multiplying by 6, and integrating with respect to z. This yields, on
applying the far-field condition (12), the expression

00 .
5= signWV)V2 (0 + e — 1)1/2
z
where the —sign()) is to account for the fact that if V < 0 (V > 0) the gradient of 6 must
be negative (positive). We can integrate ( 14) once more to obtain a relation for z as a
function of 6 which reads

; (14)

z=21(0)—2(~V) for V>0 with 0<0,

2= 2(0)— Z(—V) for V<0 with 0>0, (13)
where
Z(0) =L [ % with 0<0
1( ) \/Ef_] (w,+e_‘v71)1/2 w1 < N
(16)
1 w .
22(0) = %fg Mi‘_l)l/z with 0 > 0.
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Characterising the capacitance of the Debye layer
We now seek to relate Q_p, as given in (9), to V_. We note that

Qo= / (e 1) dt,
0

which we can rewrite as

0 —9_1
Q,,Oz/ ¢ do.

v O
On substituting for 0; from ( 14) and writing 0 = —V this integral transforms to
0= sign(V_) /V eV —1 W,
TV L @y

This integral can be further transformed by the substitution M(V) = e¢¥ —V — 1 to the
exact integral

: M(V_)
Q o= %/ LTV
’ \fz 0 M1/2

which yields the following exact relation between Q_  and V_:

Qo =sign(V_) (2" —v_ — 1))

(17)
This relation is plotted in Figure 3, from which it can be seen that Q_ is a single valued
function of V_. Hence, given the Debye layer charge density, Q_ o, we can invert to find
the potential jump across the Debye layer, V_. This motivates us to consider the evolution
of Q_p(t) as charge (in the form of positively charged vacancies) flow out into (or in
from) the bulk region.

A solvability condition on Q_ ((t)

It remains to determine the evolution of V_(t). This can be done by tracking the charge
build up in the Debye layer through the leading order expansion of the positively charged
vacancy conservation equation (1),

oP  OFN

P =0, 18
ot o¢ (18)

and the boundary conditions
f;(yi))llzo =0, flgcg — f;fmx:o as { — +oc0. (19)

These conditions are obtained from the leading order expansion of (3b) and from
matching to the leading order outer solution as { — +o0, respectively. By writing aPéd) /0t
as (0/0t)(1 — Péd)), integrating (18) between { = 0 and { = oo and applying the flux
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30 N. E. Courtier et al.
boundary conditions ( 19), we obtain the solvability condition

d9_p
dt

= —Fyolv=0- (20)

The Debye layer about x =1

The analysis of this right-hand layer proceeds in a similar fashion to the left-hand Debye
layer presented above. We introduce the rescaled spatial variable &, defined in (3.10), and
then expand as follows:

P=PPE O+, F=FEn+,
b =dPE D+, Qp=Quolt)+--.

Following an analogous series of steps to the analysis of the left-hand layer, we find that

PP = exp (W+(t) — g») : (21)

and that the leading order potential satisfies the problem

a2¢(D)
se =1 e (Wi - o)
Dy — @
0 =0 = —Z”T ;
P — Wi(t) as ¢ — oo. (22)

The solution to this problem is very similar to that for (;Sgd)(é ,t) being given by

$6(E,1) = 0, Vi(0) + WD), (23)
where V. (t) = [ g)D ) 2o is the jump in potential across the right-hand Debye layer and
the function 6(-,-) is (as before) a solution to (11) and ( 12); in other words, one can make
the transformation { — & and V_ — V. in 6({,V_) both here and in the implicit solution
for 0 given in (15). In addition, it follows from the condition that ¢{'|:—o = — (@ — @)
that

Dy — @
Wi(t) = — >

+V.(1). (24)

In a similar manner to that described above, we determine a relation between Q4o and
V; which is identical to (17) and reads

1/2

Qpo = sign(Vy) (2™ — Vi — 1) (25)

Once again, a solvability condition may be derived from the problem for the leading
order anion vacancy density, namely,

D
on Ry (26

ot 0
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Filemo=0,  FN — Fil i as & — +o0. (27)

The solvability condition we obtain on integrating this system is the following evolution
equation for Q4 o(?):

dQ 0 o
o = Troher (28)
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