8,237 research outputs found

    CP violation in the B0s system

    Full text link
    In this paper the most recent Tevatron results concerning CP violation in the B0s system are reviewed. These are the measurement of the direct CP asymmetry in the B0s->K-\pi+ decay performed by CDF and the measurement of \Delta\Gamma_s and \phi_s performed by D0 in the B0s->J/\psi\phi decay.Comment: 8 pages, 11 figures, Proceedings of the "Flavor Physics and CP Violation" Conference (FPCP07), May 12-17 2007, Bled, Sloveni

    Magnetic topology and surface differential rotation on the K1 subgiant of the RS CVn system HR 1099

    Full text link
    We present here spectropolarimetric observations of the RS CVn system HR 1099 (V711 Tau) secured from 1998 February to 2002 January with the spectropolarimeter MuSiCoS at the Telescope Bernard Lyot (Observatoire du Pic du Midi, France). We apply Zeeman-Doppler Imaging and reconstruct brightness and magnetic surface topologies of the K1 primary subgiant of the system, at five different epochs. We confirm the presence of large, axisymmetric regions where the magnetic field is mainly azimuthal, providing further support to the hypothesis that dynamo processes may be distributed throughout the whole convective zone in this star. We study the short-term evolution of surface structures from a comparison of our images with observations secured at close-by epochs by Donati et al. (2003) at the Anglo-Australian Telescope. We conclude that the small-scale brightness and magnetic patterns undergo major changes within a timescale of 4 to 6 weeks, while the largest structures remain stable over several years. We report the detection of a weak surface differential rotation (both from brightness and magnetic tracers) indicating that the equator rotates faster than the pole with a difference in rotation rate between the pole and the equator about 4 times smaller than that of the Sun. This result suggests that tidal forces also impact the global dynamic equilibrium of convective zones in cool active stars.Comment: accepted by MNRA

    Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies

    Get PDF
    Spectroscopic and spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007, 2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian Telescope using the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. Brightness and surface magnetic field topologies were reconstructed for the star using the technique of least-squares deconvolution to increase the signal-to-noise of the data. The reconstructed brightness maps show that HD 141943 had a weak polar spot and a significant amount of low latitude features, with little change in the latitude distribution of the spots over the 4 years of observations. The surface magnetic field was reconstructed at three of the epochs from a high order (l <= 30) spherical harmonic expansion of the spectropolarimetric observations. The reconstructed magnetic topologies show that in 2007 and 2010 the surface magnetic field was reasonably balanced between poloidal and toroidal components. However we find tentative evidence of a change in the poloidal/toroidal ratio in 2009 with the poloidal component becoming more dominant. At all epochs the radial magnetic field is predominantly non-axisymmetric while the azimuthal field is predominantly axisymmetric with a ring of positive azimuthal field around the pole similar to that seen on other active stars.Comment: 18 pages, 17 figures, accepted by MNRA

    Dynamo Processes in the T Tauri star V410 Tau

    Full text link
    We present new brightness and magnetic images of the weak-line T Tauri star V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope Bernard Lyot (TBL). The brightness image shows a large polar spot and significant spot coverage at lower latitudes. The magnetic maps show a field that is predominantly dipolar and non-axisymmetric with a strong azimuthal component. The field is 50% poloidal and 50% toroidal, and there is very little differential rotation apparent from the magnetic images. A photometric monitoring campaign on this star has previously revealed V-band variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter. The Doppler image presented here is consistent with this low variability. Calculating the flux predicted by the mapped spot distribution gives an peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of the lightcurve, compared with previous observations, appears to be related to a change in the distribution of the spots, rather than the number or area. This paper is the first from a Zeeman-Doppler imaging campaign being carried out on V410 Tau between 2009-2012 at TBL. During this time it is expected that the lightcurve will return to a high amplitude state, allowing us to ascertain whether the photometric changes are accompanied by a change in the magnetic field topology.Comment: 12 pages, 11 figures, accepted by MNRA

    Magnetometry of the classical T Tauri star GQ Lup: non-stationary dynamos & spin evolution of young Suns

    Get PDF
    We report here results of spectropolarimetric observations of the classical T Tauri star (cTTS) GQ Lup carried out with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) in the framework of the "Magnetic Protostars and Planets" (MaPP) programme, and obtained at 2 different epochs (2009 July & 2011 June). From these observations, we first infer that GQ Lup has a photospheric temperature of 4,300+-50\^A K and a rotation period of 8.4+-0.3 d; it implies that it is a 1.05+-0.07 Msun star viewed at an inclination of ~30deg, with an age of 2-5 Myr, a radius of 1.7+-0.2 Rsun, and has just started to develop a radiative core. Large Zeeman signatures are clearly detected at all times, both in photospheric lines & in accretion-powered emission lines, probing longitudinal fields of up to 6 kG and hence making GQ Lup the cTTS with the strongest large-scale fields known as of today. Rotational modulation of Zeeman signatures is clearly different between our 2 runs, demonstrating that large-scale fields of cTTSs are evolving with time and are likely produced by non-stationary dynamo processes. Using tomographic imaging, we reconstruct maps of the large-scale field, of the photospheric brightness & of the accretion-powered emission of GQ Lup. We find that the magnetic topology is mostly poloidal & axisymmetric; moreover, the octupolar component of the large-scale field (of strength 2.4 & 1.6 kG in 2009 & 2011) dominates the dipolar component (of strength ~1 kG) by a factor of ~2, consistent with the fact that GQ Lup is no longer fully-convective. GQ Lup also features dominantly poleward magnetospheric accretion at both epochs. The large-scale dipole of GQ Lup is however not strong enough to disrupt the surrounding accretion disc further than about half-way to the corotation radius, suggesting that GQ Lup should rapidly spin up like other similar partly-convective cTTSs (abridged).Comment: MNRAS, in press (17 pages, 10 figures, 1 table

    Magnetic activity on AB Doradus: Temporal evolution of starspots and differential rotation from 1988 to 1994

    Get PDF
    Surface brightness maps for the young K0 dwarf AB Doradus are reconstructed from archival data sets for epochs spanning 1988 to 1994. By using the signal-to-noise enhancement technique of Least-Squares Deconvolution, our results show a greatly increased resolution of spot features than obtained in previously published surface brightness reconstructions. These images show that for the exception of epoch 1988.96, the starspot distributions are dominated by a long-lived polar cap, and short-lived low to high latitude features. The fragmented polar cap at epoch 1988.96 could indicate a change in the nature of the dynamo in the star. For the first time we measure differential rotation for epochs with sufficient phase coverage (1992.05, 1993.89, 1994.87). These measurements show variations on a timescale of at least one year, with the strongest surface differential rotation ever measured for AB Dor occurring in 1994.86. In conjunction with previous investigations, our results represent the first long-term analysis of the temporal evolution of differential rotation on active stars.Comment: accepted by MNRAS 18 pages 18 figure

    Magnetic field, differential rotation and activity of the hot-Jupiter hosting star HD 179949

    Full text link
    HD 179949 is an F8V star, orbited by a giant planet at ~8 R* every 3.092514 days. The system was reported to undergo episodes of stellar activity enhancement modulated by the orbital period, interpreted as caused by Star-Planet Interactions (SPIs). One possible cause of SPIs is the large-scale magnetic field of the host star in which the close-in giant planet orbits. In this paper we present spectropolarimetric observations of HD 179949 during two observing campaigns (2009 September and 2007 June). We detect a weak large-scale magnetic field of a few Gauss at the surface of the star. The field configuration is mainly poloidal at both observing epochs. The star is found to rotate differentially, with a surface rotation shear of dOmega=0.216\pm0.061 rad/d, corresponding to equatorial and polar rotation periods of 7.62\pm0.07 and 10.3\pm0.8 d respectively. The coronal field estimated by extrapolating the surface maps resembles a dipole tilted at ~70 degrees. We also find that the chromospheric activity of HD 179949 is mainly modulated by the rotation of the star, with two clear maxima per rotation period as expected from a highly tilted magnetosphere. In September 2009, we find that the activity of HD 179949 shows hints of low amplitude fluctuations with a period close to the beat period of the system.Comment: Accepted for publication in Monthly Notices of The Royal Astronomical Societ

    Physics-based large-signal sensitivity analysis of microwave circuits using technological parametric sensitivity from multidimensional semiconductor device models

    Get PDF
    The authors present an efficient approach to evaluate the large-signal (LS) parametric sensitivity of active semiconductor devices under quasi-periodic operation through accurate, multidimensional physics-based models. The proposed technique exploits efficient intermediate mathematical models to perform the link between physics-based analysis and circuit-oriented simulations, and only requires the evaluation of dc and ac small-signal (dc charge) sensitivities under general quasi-static conditions. To illustrate the technique, the authors discuss examples of sensitivity evaluation, statistical analysis, and doping profile optimization of an implanted MESFET to minimize intermodulation which makes use of LS parametric sensitivities under two-tone excitatio

    Rotationally Modulated X-ray Emission from T Tauri Stars

    Get PDF
    We have modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating surface magnetograms we find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, we calculate X-ray periods and make comparisons with optically determined rotation periods. We find that X-ray periods are typically equal to, or are half of, the optical periods. Further, we find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius.Comment: 10 pages, 8 figures, accepted for publication in MNRA
    • 

    corecore