197 research outputs found

    Morphological Study of Man-Machine Interfaces in a Completely New Type of Car

    Get PDF

    Performance Verification of the FlashCam Prototype Camera for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.Comment: 5 pages, 13 figures, Proceedings of the 9th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2016), Lake Bled, Sloveni

    The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    Full text link
    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m2^2. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of \sim94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    Full text link
    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale FlashCam camera prototype currently under construction, as well as performance results also obtained with earlier demonstrator setups. Plans towards the production and implementation of FlashCams on site are also briefly presented.Comment: 8 pages, 6 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    FlashCam: A fully digital camera for CTA telescopes

    Full text link
    The future Cherenkov Telescope Array (CTA) will consist of several tens of telescopes of different mirror sizes. CTA will provide next generation sensitivity to very high energy photons from few tens of GeV to >100 TeV. Several focal plane instrumentation options are currently being evaluated inside the CTA consortium. In this paper, the current status of the FlashCam prototyping project is described. FlashCam is based on a fully digital camera readout concept and features a clean separation between photon detector plane and signal digitization/triggering electronics.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184

    The Cherenkov Telescope Array Large Size Telescope

    Full text link
    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    Oral abstracts 1: SpondyloarthropathiesO1. Detecting axial spondyloarthritis amongst primary care back pain referrals

    Get PDF
    Background: Inflammatory back pain (IBP) is an early feature of ankylosing spondylitis (AS) and its detection offers the prospect of early diagnosis of AS. However, since back pain is very common but only a very small minority of back pain sufferers have ASpA or AS, screening of back pain sufferers for AS is problematic. In early disease radiographs are often normal so that fulfilment of diagnostic criteria for AS is impossible though a diagnosis of axial SpA can be made if MRI evidence of sacroiliitis is present. This pilot study was designed to indicate whether a cost-effective pick up rate for ASpA/early AS could be achieved by identifying adults with IBP stratified on the basis of age. Methods: Patients aged between 18 and 45 years who were referred to a hospital physiotherapy service with back pain of more than 3 months duration were assessed for IBP. All were asked to complete a questionnaire based on the Berlin IBP criteria. Those who fulfilled IBP criteria were also asked to complete a second short questionnaire enquiring about SpA comorbidities, to have a blood test for HLA-B27 and CRP level and to undergo an MRI scan of the sacroiliac joints. This was a limited scan, using STIR, diffusion-weighted, T1 and T2 sequences of the sacroiliac joints to minimize time in the scanner and cost. The study was funded by a research grant from Abbott Laboratories Ltd. Results: 50 sequential patients agreed to participate in the study and completed the IBP questionnaire. Of these 27 (54%) fulfilled criteria for IBP. Of these, 2 patients reported a history of an SpA comorbidity - 1 psoriasis; 1 ulcerative colitis - and 3 reported a family history of an SpA comorbidity - 2 psoriasis; 1 Crohn's disease. 4 were HLA-B27 positive, though results were not available for 7. Two patients had marginally raised CRP levels (6, 10 -NR ≤ 5). 19 agreed to undergo MRI scanning of the sacroiliac joints and lumbar spine; 4 scans were abnormal, showing evidence of bilateral sacroiliitis on STIR sequences. In all cases the changes met ASAS criteria but were limited. Of these 4 patients 3 were HLA-B27 positive but none gave a personal or family history of an SpA-associated comorbidity and all had normal CRP levels. Conclusions: This was a pilot study yielding only limited conclusions. However, it is clear that: Screening of patients referred for physiotherapy for IBP is straightforward, inexpensive and quick. It appears that IBP is more prevalent in young adults than overall population data suggest so that targeting this population may be efficient. IBP questionnaires could be administered routinely during a physiotherapy assessment. HLA-B27 testing in this group of patients with IBP is a suitable screening tool. The sacroiliac joint changes identified were mild and their prognostic significance is not yet clear so that the value of early screening needs further evaluation. Disclosure statement: C.H. received research funding for this study from Abbott. A.K. received research funding for this study, and speaker and consultancy fees, from Abbott. All other authors have declared no conflicts of interes

    First Constraints from DAMIC-M on Sub-GeV Dark-Matter Particles Interacting with Electrons

    Get PDF
    We report constraints on sub-GeV dark matter particles interacting with electrons from the first underground operation of DAMIC-M detectors. The search is performed with an integrated exposure of 85.23 g days, and exploits the subelectron charge resolution and low level of dark current of DAMIC-M charge-coupled devices (CCDs). Dark-matter-induced ionization signals above the detector dark current are searched for in CCD pixels with charge up to 7e−. With this dataset we place limits on dark matter particles of mass between 0.53 and 1000  MeV/c2, excluding unexplored regions of parameter space in the mass ranges [1.6,1000]  MeV/c2 and [1.5,15.1]  MeV/c2 for ultralight and heavy mediator interactions, respectively
    corecore