599 research outputs found

    The relativity experiment of MORE: global full-cycle simulation and results

    Get PDF
    BepiColombo is a joint ESA/JAXA mission to Mercury with challenging objectives regarding geophysics, geodesy and fundamental physics. In particular, the Mercury Orbiter Radioscience Experiment (MORE) intends, as one of its goals, to perform a test of General Relativity. This can be done by measuring and constraing the post-Newtonian (PN) parameters to an accuracy significantly better than current one. In this work we perform a global full-cycle simulation of the BepiColombo Radio Science Experiments (RSE) in a realistic scenario, focussing on the relativity experiment but solving simultaneously for all the parameters of interest for RSE in a global least squares fit within a constrained multiarc strategy. The results on the achievable accuracy for each PN parameter will be presented and discussed

    A simulation tool for MRPC telescopes of the EEE project

    Full text link
    The Extreme Energy Events (EEE) Project is mainly devoted to the study of the secondary cosmic ray radiation by using muon tracker telescopes made of three Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a telescope network mainly distributed across Italy, hosted in different building structures pertaining to high schools, universities and research centers. Therefore, the possibility to take into account the effects of these structures on collected data is important for the large physics programme of the project. A simulation tool, based on GEANT4 and using GEMC framework, has been implemented to take into account the muon interaction with EEE telescopes and to estimate the effects on data of the structures surrounding the experimental apparata.A dedicated event generator producing realistic muon distributions, detailed geometry and microscopic behavior of MRPCs have been included to produce experimental-like data. The comparison between simulated and experimental data, and the estimation of detector resolutions is here presented and discussed

    NA60 results on pTp_T spectra and the ρ\rho spectral function in In-In collisions

    Get PDF
    The NA60 experiment at the CERN SPS has studied low-mass muon pairs in 158 AGeV In-In collisions. A strong excess of pairs is observed above the yield expected from neutral meson decays. The unprecedented sample size of close to 400K events and the good mass resolution of about 2% have made it possible to isolate the excess by subtraction of the decay sources (keeping the ρ\rho). The shape of the resulting mass spectrum exhibits considerable broadening, but essentially no shift in mass. The acceptance-corrected transverse-momentum spectra have a shape atypical for radial flow and show a significant mass dependence, pointing to different sources in different mass regions.Comment: 4 pages, 4 figures, Quark Matter 2006 conference proceeding

    Latest results from NA60

    Get PDF
    The NA60 experiment has measured the production of muon pairs and of charged particles in In+In collisions at a beam energy of 158 AGeV. For invariant dimuon masses below the phi the space-time averaged rho spectral function was isolated by a novel procedure. It shows a strong broadening but essentially no shift in mass. The production of J/psi was measured as a function of the collision centrality. As in previous experiments studying Pb+Pb collisions an anomalous supression is observed, setting in at approximately 90 participant nucleons. Using the charged particles the reaction plane was reconstructed. The elliptic flow of charged particles increases with pt showing a saturation for pt > 2GeV/c. For the first time azimuthal distributions for J/psi are shown.Comment: 9 pages, 11 figures, talk given at the conference "Strangeness in Quark Matter 2006 (SQM2006)", March 2006, Los Angeles, USA, accepted for publication in Journal of Physics

    Measurements of the reaction pˉpϕη\bar{p}p \to \phi \eta of antiproton annihilation at rest at three hydrogen target densities

    Full text link
    The proton-antiproton annihilation at rest into the ϕη\phi\eta final state was measured for three different target densities: liquid hydrogen, gaseous hydrogen at NTP and at a low pressure of 5 mbar. The yield of this reaction in the liquid hydrogen target is smaller than in the low-pressure gas target. The branching ratios of the ϕη\phi\eta channel were calculated on the basis of simultaneous analysis of the three data samples. The branching ratio for annihilation into ϕη\phi\eta from the 3S1^3S_1 protonium state turns out to be about ten times smaller as compared to the one from the 1P1^1P_1 state.Comment: 10 pages, 3 Postscript figures. Accepted by Physics Letters

    Evidence for radial flow of thermal dileptons in high-energy nuclear collisions

    Get PDF
    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.Comment: Accepted for publication in Physical Review Letter

    First Measurement of the rho Spectral Function in High-Energy Nuclear Collisions

    Get PDF
    We report on a precision measurement of low-mass muon pairs in 158 AGeV indium-indium collisions at the CERN SPS. A significant excess of pairs is observed above the yield expected from neutral meson decays. The unprecedented sample size of 360 000 dimuons and the good mass resolution of about 2% allow us to isolate the excess by subtraction of the decay sources. The shape of the resulting mass spectrum is consistent with a dominant contribution from pi+pi-->rho-->mu+mu- annihilation. The associated space-time averaged rho spectral function shows a strong broadening, but essentially no shift in mass. This may rule out theoretical models linking hadron masse

    J/psi azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    Get PDF
    The J/ψ\psi azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/ψ\psi mesons at SPS energies. Hence, the measurement of J/ψ\psi elliptic anisotropy, quantified by the Fourier coefficient v2_2 of the J/ψ\psi azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/ψ\psi suppression observed in Pb-Pb collisions. We present the measured J/ψ\psi yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v2_{2} as a function of the collision centrality and of the J/ψ\psi transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100 000 events, distributed in five centrality or pT_{\rm T} sub-samples. The extracted v2_{2} values are significantly larger than zero for non-central collisions and are seen to increase with pT_{\rm T}.Comment: proceedings of HP08 conference corrected a typo in one equatio

    NA60 results on thermal dimuons

    Get PDF
    The NA60 experiment at the CERN SPS has measured muon pairs with unprecedented precision in 158A GeV In-In collisions. A strong excess of pairs above the known sources is observed in the whole mass region 0.2<M<2.6 GeV. The mass spectrum for M<1 GeV is consistent with a dominant contribution from pi+pi- -> rho -> mu+mu- annihilation. The associated rho spectral function shows a strong broadening, but essentially no shift in mass. For M>1 GeV, the excess is found to be prompt, not due to enhanced charm production, with pronounced differences to Drell-Yan pairs. The slope parameter Teff associated with the transverse momentum spectra rises with mass up to the rho, followed by a sudden decline above. The rise for M<1 GeV is consistent with radial flow of a hadronic emission source. The seeming absence of significant flow for M>1 GeV and its relation to parton-hadron duality is discussed in detail, suggesting a dominantly partonic emission source in this region. A comparison of the data to the present status of theoretical modeling is also contained. The accumulated empirical evidence, including also a Planck-like shape of the mass spectra at low pT and the lack of polarization, is consistent with a global interpretation of the excess dimuons as thermal radiation. We conclude with first results on omega in-medium effects.Comment: 10 pages, 12 figures, submitted to Eur. Phys. J.

    Bottomonium and Drell-Yan production in p-A collisions at 450 GeV

    Get PDF
    The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.Comment: 18 pages, 9 figures, to be published in Phys. Lett.
    corecore