3,871 research outputs found
A Very Large Area Network (VLAN) knowledge-base applied to space communication problems
This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally
Preoccupied by the past - the case of Estonia's Museum of Occupations
The nation is born out of the resistance, ideally without external aid, of its nascent citizens against oppression [...] An effective founding struggle should contain memorable massacres, atrocities, assassinations and the like, which serve to unite and strengthen resistance and render the resulting victory the more justified and the more fulfilling. They also can provide a focus for a "remember the x atrocity" historical narrative.(1
Covert Channels in SIP for VoIP signalling
In this paper, we evaluate available steganographic techniques for SIP
(Session Initiation Protocol) that can be used for creating covert channels
during signaling phase of VoIP (Voice over IP) call. Apart from characterizing
existing steganographic methods we provide new insights by introducing new
techniques. We also estimate amount of data that can be transferred in
signalling messages for typical IP telephony call.Comment: 8 pages, 4 figure
Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrVO ( = Co, Mn)
Magnetic correlations of two iso-structural quasi-one-dimensional (1D)
antiferromagnetic spin-chain compounds SrVO ( = Co, Mn) have
been investigated by magnetization and powder neutron diffraction. Two
different collinear antiferromagnetic (AFM) structures, characterized by the
propagation vectors, = (0 0 1) and = (0 0 0), have been found below
5.2 K and 42.2 K for the Co- and Mn-compounds, respectively. For
the Mn-compound, AFM chains (along the axis) order ferromagnetically within
the plane, whereas, for the Co-compound, AFM chains order
ferro-/antiferromagnetically along the direction. The critical exponent
study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg
universality classes, respectively. For both compounds, short-range spin-spin
correlations are present over a wide temperature range above . The reduced
ordered moments at base temperature (1.5 K) indicate the presence of quantum
fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table
Colloidal crystal growth at externally imposed nucleation clusters
We study the conditions under which and how an imposed cluster of fixed
colloidal particles at prescribed positions triggers crystal nucleation from a
metastable colloidal fluid. Dynamical density functional theory of freezing and
Brownian dynamics simulations are applied to a two-dimensional colloidal system
with dipolar interactions. The externally imposed nucleation clusters involve
colloidal particles either on a rhombic lattice or along two linear arrays
separated by a gap. Crystal growth occurs after the peaks of the nucleation
cluster have first relaxed to a cutout of the stable bulk crystal.Comment: 4 pages, accepted for publication in Phys. Rev. Let
The "Bioeffect Assessment Index"- A concept for the quantification of effects of marine pollution by an integrated biomarker approach
A Family of Exact, Analytic Time Dependent Wave Packet Solutions to a Nonlinear Schroedinger Equation
We obtain time dependent -Gaussian wave-packet solutions to a non linear
Schr\"odinger equation recently advanced by Nobre, Rego-Montero and Tsallis
(NRT) [Phys. Rev. Lett. 106 (2011) 10601]. The NRT non-linear equation admits
plane wave-like solutions (-plane waves) compatible with the celebrated de
Broglie relations connecting wave number and frequency, respectively, with
energy and momentum. The NRT equation, inspired in the -generalized
thermostatistical formalism, is characterized by a parameter , and in the
limit reduces to the standard, linear Schr\"odinger equation. The
-Gaussian solutions to the NRT equation investigated here admit as a
particular instance the previously known -plane wave solutions. The present
work thus extends the range of possible processes yielded by the NRT dynamics
that admit an analytical, exact treatment. In the limit the
-Gaussian solutions correspond to the Gaussian wave packet solutions to the
free particle linear Schr\"odinger equation. In the present work we also show
that there are other families of nonlinear Schr\"odinger-like equations,
besides the NRT one, exhibiting a dynamics compatible with the de Broglie
relations. Remarkably, however, the existence of time dependent Gaussian-like
wave packet solutions is a unique feature of the NRT equation not shared by the
aforementioned, more general, families of nonlinear evolution equations
Consequences of critical interchain couplings and anisotropy on a Haldane chain
Effects of interchain couplings and anisotropy on a Haldane chain have been
investigated by single crystal inelastic neutron scattering and density
functional theory (DFT) calculations on the model compound SrNiVO.
Significant effects on low energy excitation spectra are found where the
Haldane gap (; where is the intrachain exchange
interaction) is replaced by three energy minima at different antiferromagnetic
zone centers due to the complex interchain couplings. Further, the triplet
states are split into two branches by single-ion anisotropy. Quantitative
information on the intrachain and interchain interactions as well as on the
single-ion anisotropy are obtained from the analyses of the neutron scattering
spectra by the random phase approximation (RPA) method. The presence of
multiple competing interchain interactions is found from the analysis of the
experimental spectra and is also confirmed by the DFT calculations. The
interchain interactions are two orders of magnitude weaker than the
nearest-neighbour intrachain interaction = 8.7~meV. The DFT calculations
reveal that the dominant intrachain nearest-neighbor interaction occurs via
nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty
orbital of V ions. The present single crystal study also allows us to
correctly position SrNiVO in the theoretical - phase
diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where
it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015
A generalized approach to modal filtering for active noise control - Part I: Vibration sensing
Copyright © 2002 IEEEMany techniques for controlling the noise radiated by large structures require a large number of inputs to the controller to produce global attenuation. Unfortunately, processing the large number of inputs required is often beyond the capabilities of current controllers. In attempting to overcome this problem, many researchers have adopted various modal-filtering-type techniques. Such techniques involve resolving a small number of important global quantities (traditionally structural modes) from a large number of sensor measurements. However, current approaches require detailed structural information at the design stage. Determining this for complex, real-world structures may be very difficult, preventing many techniques from going beyond the laboratory. The technique presented here outlines a new sensing system strategy, where the radiated sound field is decomposed using multipole radiation patterns, thereby alleviating the need for detailed structural information. Simulation and experimental results are presented.Nicholas C. Burgan, Scott D. Snyder, Nobuo Tanaka and Anthony C. Zande
- …
