3,871 research outputs found

    A Very Large Area Network (VLAN) knowledge-base applied to space communication problems

    Get PDF
    This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally

    Preoccupied by the past - the case of Estonia's Museum of Occupations

    Get PDF
    The nation is born out of the resistance, ideally without external aid, of its nascent citizens against oppression [...] An effective founding struggle should contain memorable massacres, atrocities, assassinations and the like, which serve to unite and strengthen resistance and render the resulting victory the more justified and the more fulfilling. They also can provide a focus for a "remember the x atrocity" historical narrative.(1

    Covert Channels in SIP for VoIP signalling

    Full text link
    In this paper, we evaluate available steganographic techniques for SIP (Session Initiation Protocol) that can be used for creating covert channels during signaling phase of VoIP (Voice over IP) call. Apart from characterizing existing steganographic methods we provide new insights by introducing new techniques. We also estimate amount of data that can be transferred in signalling messages for typical IP telephony call.Comment: 8 pages, 4 figure

    Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrM2M_2V2_2O8_8 (MM = Co, Mn)

    Full text link
    Magnetic correlations of two iso-structural quasi-one-dimensional (1D) antiferromagnetic spin-chain compounds SrM2M_2V2_2O8_8 (MM = Co, Mn) have been investigated by magnetization and powder neutron diffraction. Two different collinear antiferromagnetic (AFM) structures, characterized by the propagation vectors, kk = (0 0 1) and kk = (0 0 0), have been found below \sim 5.2 K and \sim 42.2 K for the Co- and Mn-compounds, respectively. For the Mn-compound, AFM chains (along the cc axis) order ferromagnetically within the abab plane, whereas, for the Co-compound, AFM chains order ferro-/antiferromagnetically along the a/ba/b direction. The critical exponent study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg universality classes, respectively. For both compounds, short-range spin-spin correlations are present over a wide temperature range above TNT_N. The reduced ordered moments at base temperature (1.5 K) indicate the presence of quantum fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table

    Colloidal crystal growth at externally imposed nucleation clusters

    Full text link
    We study the conditions under which and how an imposed cluster of fixed colloidal particles at prescribed positions triggers crystal nucleation from a metastable colloidal fluid. Dynamical density functional theory of freezing and Brownian dynamics simulations are applied to a two-dimensional colloidal system with dipolar interactions. The externally imposed nucleation clusters involve colloidal particles either on a rhombic lattice or along two linear arrays separated by a gap. Crystal growth occurs after the peaks of the nucleation cluster have first relaxed to a cutout of the stable bulk crystal.Comment: 4 pages, accepted for publication in Phys. Rev. Let

    A Family of Exact, Analytic Time Dependent Wave Packet Solutions to a Nonlinear Schroedinger Equation

    Full text link
    We obtain time dependent qq-Gaussian wave-packet solutions to a non linear Schr\"odinger equation recently advanced by Nobre, Rego-Montero and Tsallis (NRT) [Phys. Rev. Lett. 106 (2011) 10601]. The NRT non-linear equation admits plane wave-like solutions (qq-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the qq-generalized thermostatistical formalism, is characterized by a parameter qq, and in the limit q1q \to 1 reduces to the standard, linear Schr\"odinger equation. The qq-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known qq-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the q1q \to 1 limit the qq-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schr\"odinger equation. In the present work we also show that there are other families of nonlinear Schr\"odinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ00.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-JJ_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015

    A generalized approach to modal filtering for active noise control - Part I: Vibration sensing

    Get PDF
    Copyright © 2002 IEEEMany techniques for controlling the noise radiated by large structures require a large number of inputs to the controller to produce global attenuation. Unfortunately, processing the large number of inputs required is often beyond the capabilities of current controllers. In attempting to overcome this problem, many researchers have adopted various modal-filtering-type techniques. Such techniques involve resolving a small number of important global quantities (traditionally structural modes) from a large number of sensor measurements. However, current approaches require detailed structural information at the design stage. Determining this for complex, real-world structures may be very difficult, preventing many techniques from going beyond the laboratory. The technique presented here outlines a new sensing system strategy, where the radiated sound field is decomposed using multipole radiation patterns, thereby alleviating the need for detailed structural information. Simulation and experimental results are presented.Nicholas C. Burgan, Scott D. Snyder, Nobuo Tanaka and Anthony C. Zande
    corecore