520 research outputs found
A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum
The original publication is available at www.springerlink.com.ArticleApplied Microbiology and Biotechnology. 72(4): 783-789 (2006)journal articl
ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair
Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest.
Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1
Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria
Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities.
Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b.
The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity.
The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase.
Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type.
These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane
2, 4-Diamino-6- hydroxy pyrimidine inhibits NSAIDs induced nitrosyl-complex EPR signals and ulcer in rat jejunum
BACKGROUND: It has been suggested that one aspect of non-steroidal anti-inflammatory drugs induced intestinal damage is due to either uncoupling of mitochondrial oxidative phosphorylation or inhibition of electron transport. We investigated the latter possibility using electron paramagnetic resonance spectroscopy. RESULTS: Electron paramagnetic studies of NSAIDS on sub-mitochondrial particles revealed that indomethacin, but not with nabumetone, bound to a site near to Complex I and ubiquinone to generate a radical species. Normal rats exhibited prominent [3Fe-4S]ox signals (g ~ 2.01) at 20 K. One hour after indomethacin there was a prominent, intense and broad absorption pattern at (g ~2.07) suggesting, appearance of radical species overlapping [3Fe-4S]ox and was unaffected by pretreatment with 2,4 diamino -6-hydroxy pyrimidine. At 24 hrs, when macroscopic ulcers were seen, there was a new signal due to a nitric oxide radical (NO•). In contrast, nabumetone and 2,4 diamino-6-hydroxy pyrimidine pre-treated animals receiving indomethacin exhibited electron paramagnetic resonance spectra identical to those of controls at 24 hrs and neither was associated with small intestinal ulcers. Indomethacin and 2,4 diamino hydroxy pyrimidine pre-treated rats, but not nabumetone, had increased intestinal permeability. CONCLUSION: The results suggest that the in vivo effects of indomethacin modulate the mitochondrial respiratory chain directly at 1 h and 24 h through formation of nitric oxide. NO• appears to play an important role in the late pathogenic stages of NSAID enteropathy and may be the site for targeted treatment to reduce their toxicity
The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols
It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols
Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination
In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs
Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver
<p>Abstract</p> <p>Background</p> <p>The unbound, free concentration (B<sub>f</sub>) of unconjugated bilirubin (UCB), and not the total UCB level, has been shown to correlate with bilirubin cytotoxicity, but the key molecular mechanisms accounting for the toxic effects of UCB are largely unknown.</p> <p>Findings</p> <p>Mouse liver mitochondria increase unbound UCB oxidation, consequently increasing the apparent rate constant for unbound UCB oxidation by HRP (Kp), higher than in control and mouse brain mitochondria, emphasizing the importance of determining Kp in complete systems containing the organelles being studied. The <it>in vitro </it>effects of UCB on cytochrome <it>c </it>oxidase activity in mitochondria isolated from mouse brain and liver were studied at B<sub>f </sub>ranging from 22 to 150 nM. The results show that UCB at B<sub>f </sub>up to 60 nM did not alter mitochondrial cytochrome <it>c </it>oxidase activity, while the higher concentrations significantly inhibited the enzyme activity by 20% in both liver and brain mitochondria.</p> <p>Conclusions</p> <p>We conclude that it is essential to include the organelles being studied in the medium used in measuring both Kp and B<sub>f</sub>. A moderately elevated, pathophysiologically-relevant B<sub>f </sub>impaired the cytochrome <it>c </it>oxidase activity modestly in mitochondria from mouse brain and liver.</p
An operative case of hepatic pseudolymphoma difficult to differentiate from primary hepatic marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue
Hepatic pseudolymphoma (HPL) and primary hepatic marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) are rare diseases and the differential diagnosis between these two entities is sometimes difficult. We herein report a 56-year-old Japanese woman who was pointed out to have a space occupying lesion in the left lateral segment of the liver. Hepatitis viral-associated antigen/antibody was negative and liver function tests including lactic dehydrogenase, peripheral blood count, tumor markers and soluble interleukin-2 receptor were all within normal limit. Imaging study using computed tomography and magnetic resonance imaging were not typical for hepatocellular carcinoma, cholangiocarcinoma, or other metastatic cancer. Fluorodeoxyglucose-positron emission tomography examination integrated with computed tomography scanning showed high standardized uptake value in the solitary lesion in the liver. Under a diagnosis of primary liver neoplasm, laparoscopic-assisted lateral segmentectomy was performed. Liver tumor of maximal 1.0 cm in diameter was consisted of aggregation of lymphocytes of predominantly B-cell, containing multiple lymphocyte follicles positive for CD10 and bcl-2, consistent with a diagnosis of HPL rather than MALT lymphoma, although a definitive differentiation was pending. The background liver showed non-alcoholic fatty liver disease/early non-alcoholic steatohepatitis. The patient is currently doing well with no sign of relapse 13 months after the surgery. Since the accurate diagnosis is difficult, laparoscopic approach would provide a reasonable procedure of diagnostic and therapeutic advantage with minimal invasiveness for patients. Considering that the real nature of this entity remains unclear, vigilant follow-up of patient is essential
Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2
Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats
Trypanosoma cruzi Gene Expression in Response to Gamma Radiation
Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress
- …