296 research outputs found

    The Stratigraphy of Central and Western Butte and the Greenheugh Pediment Contact

    Get PDF
    The Greenheugh pediment at the base of Aeolis Mons (Mt. Sharp), which may truncate units in the Murray formation and is capped by a thin sandstone unit, appears to represent a major shift in climate history within Gale crater. The pediment appears to be an erosional remnant of potentially a much more extensive feature. Curiositys traverse through the southern extent of Glen Torridon (south of Vera Rubin ridge) has brought the rover in contact with several new stratigraphic units that lie beneath the pediment. These strata were visited at two outcrop-forming buttes (Central and Western butte- both remnants of the retreating pediment) south of an orbitally defined boundary marking the transition from the Fractured Clay-bearing Unit (fCU) and the fractured Intermediate Unit (fIU). Here we present preliminary interpretations of the stratigraphy within Central and Western buttes and propose the Western butte cap rocks do not match the pediment capping unit

    Critical Dimensions in Architectural Photography: Contributions to Architectural Knowledge

    Get PDF
    This paper illustrates and explores three critical dimensions of photography in architecture, each of which informs the production of images, texts, and other artifacts which establish what might be called a building’s media footprint. The paper’s broad goal is to question the extent to which these critical dimensions are relevant to architectural decision-making processes. Acknowledging that such dimensions as the ones examined here rarely predict an architect’s specific design decisions in a transparent manner, the paper discusses not only the decisions made by architects during the process of designing buildings, but the decisions made by critics, visitors, and members of the general public as they engage in activities such as visiting buildings, writing about them and, particularly, photographing them. First, the text discusses the potential of buildings to operate as mechanisms for producing images, in the sense originated by Beatriz Colomina. The question is developed through the analysis of the space of photography – mapping of points of view, directions of view, and fields of view of defined photographic collections. Secondly, it considers photography’s complicity in the canonization of buildings, and specifically, the extent to which photography is responsible for distinguishing between major and minor architectural works. Finally, the essay examines the erosion over time of photography’s historical power to frame when confronted with contemporary technologies of virtual reality and photo realistically rendered digital models. Each of these critical dimensions, or concepts, develops a specific aspect of how photographic information about buildings is organized, structured, and disseminated, and is thus only part of the larger project of architectural epistemology, which inquires into this wider field. This will be done through an examination of the Mies van der Rohe-designed Commons Building at ITT in Chicago and the evolution of its relationship with architectural photography and photographic representation – both on its own terms and through the prism of the Rem Koolhaas-designed McCormick Tribune Student Center, which adds to and incorporates the Commons Building. Until the end of the twentieth century, the Commons Building on the campus of the Illinois Institute of Technology was generally considered one of Mies van der Rohe’s lesser works. Reportedly neglected by its own architect during the design process, and frequently marginalized in academic discussions of the campus, when mentioned at all the building was often cited as an unrefined prototype of Crown Hall. This discourse took a new direction when in 1998, Rem Koolhaas/OMA won a design competition for a student center on the IIT campus: uniquely among the competition entries, Koolhaas’s design incorporated the Commons Building within a new context – what ultimately became the McCormick Tribune Campus Center (MTCC). When critics concluded that the incorporation of the Commons Building into the larger whole could compromise its integrity as an exemplar of Mies’s work, the building became the object of renewed interest and controversy. The two projects considered here show a clear evolution in architecture’s relationship with the photographic image. Specifically, the history of the Commons Building can be traced through photographs: during and shortly following its construction, the building was photographed as part of Mies’s own attention to publicity; it was documented as part of historical analyses; and over time it was visited and photographed by casual and amateur photographers. Following the competition results, photographs of the Commons Building were strategically deployed by both proponents and critics of Koolhaas’s design. Contemporary photographs of the building appear in architectural and campus guidebooks and on websites such as Flickr.com. Examining the ways in which photographs of the Commons Building appear in these various contexts allows discussion of the critical dimensions identified above and permits us to trace the evolution of the mutually reinforcing relationship between architecture and photography

    A sensual philology for Anglo-Saxon England

    Get PDF
    What forgotten forms can philology assume anew? Reassessing how early medieval writers loved words differently than we do reveals significant gaps between past and presence senses of the physical phenomena words can index. In the early medieval language of Old English texts there remains a largely uncharted capacity for less linguistically driven aspects of expression, formed through a network of words, sounds, bodies and media: how the mute sound of a bell and the crook of a silent finger come together in medieval sign language, or how the Old English word for ring becomes a weeping, poetic gasp within a heaving breast. Such early medieval moments of communication survive because of language and in spite of language, and qualify the visualist framework through which we predictably reconstitute the medieval past, calling, /sotto voce/, for more than lovely words

    Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of <i>Curiosity's</i> Exploration Campaign

    Get PDF
    This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge and summarizes the science results. Vera Rubin ridge (VRR) is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mt. Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray‐colored patches concentrated towards the upper elevations of VRR, and these gray patches also contain small, dark Fe‐rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric‐related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars’ rock record

    Swimming against the tide: A case study of an integrated social studies department

    Get PDF
    A recent trend in developed countries&rsquo; school curricula has been the transition from disciplinary to generic forms of knowledge, resulting in an emphasis on interdisciplinary organisation and more active forms of learning. Subject specialists are increasingly expected to demonstrate how their subject interconnects and equips pupils with key life skills. Such a change requires a major cultural shift and has been controversial, particularly in Scotland where Curriculum for Excellence, the latest curriculum reform, has seen this debate re-emerge. A detailed empirical case study of one secondary school Social Studies department that has already negotiated these shifts is presented. The case study provides insights into how school and department structures and cultures conducive to a more integrated approach have been developed. Leadership, increased opportunities for teachers to exercise greater autonomy in their work, sources of impetus and support for innovation, and the co-construction of meaning through dialogue are important themes in this process. This case study connects with current policy and provides an insight into strategies that other schools might employ when seeking to embed integrative practices. The department is identified as a significant locus for innovation and one which appears to challenge the norm

    UK Space Agency ``Mars Utah Rover Field Investigation 2016'' (MURFI 2016): Overview of Mission, Aims, and Progress

    Get PDF
    The Mars Utah Rover Field Investigation “MURFI 2016” is a Mars Rover field analogue mission run by the UK Space Agency (UKSA) in collaboration with the Canadian Space Agency (CSA). MURFI 2016 took place between 22nd October and 13th November 2016 and consisted of a field team including an instrumented Rover platform, at the field site near Hanksville (Utah, USA), and an ‘Operations Team’ based in the Mission Control Centre (MOC) at the Harwell Campus near Oxford in the UK.The field site was chosen based on the collaboration with the CSA and its Mars-like local geology. It was used by the CSA in 2015 for Mars Rover trials, and in 2016, several teams used the site, each with their own designated working areas. The two main aims of MURFI 2016 were (i) to develop logistical and leadership experience in running field trials within the UKSA, and (ii) to provide members of the Mars Science community with Rover Operations experience, and hence to build expertise that could be used in the 2020 ExoMars Rover mission, or other future Rover missions. Because MURFI 2016 was the first solely UKSA-led Rover analogue trial, the most important objective was to learn how to best implement Rover trials in general. This included aspects of planning, logistics, field safety, MOC setup and support, communications, person management and science team development. Some aspects were based on past experience from previous trials but the focus was on ‘learning through experience’ - especially in terms of the Operations Team, who each took on a variety of roles during the mission

    The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

    Get PDF
    The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind mode’, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials

    FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas.

    Get PDF
    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients
    • 

    corecore