319 research outputs found
Advanced Concepts in Josephson Junction Reflection Amplifiers
Low-noise amplification atmicrowave frequencies has become increasingly
important for the research related to superconducting qubits and
nanoelectromechanical systems. The fundamental limit of added noise by a
phase-preserving amplifier is the standard quantum limit, often expressed as
noise temperature . Towards the goal of the
quantum limit, we have developed an amplifier based on intrinsic negative
resistance of a selectively damped Josephson junction. Here we present
measurement results on previously proposed wide-band microwave amplification
and discuss the challenges for improvements on the existing designs. We have
also studied flux-pumped metamaterial-based parametric amplifiers, whose
operating frequency can be widely tuned by external DC-flux, and demonstrate
operation at pumping, in contrast to the typical metamaterial
amplifiers pumped via signal lines at .Comment: 9 pages, 6 figure
Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m7 guanosine cap
In eukaryotes the majority of mRNAs have an m7G cap that is added cotranscriptionally and that plays an important role in many aspects of mRNA metabolism. The nuclear cap-binding complex (CBC; consisting of CBP20 and CBP80) mediates the stimulatory functions of the cap in pre-mRNA splicing, 3' end formation, and U snRNA export. As little is known about how nuclear CBC mediates the effects of the cap in higher eukaryotes, we have characterized proteins that interact with CBC in HeLa cell nuclear extracts as potential mediators of its function. Using cross-linking and coimmunoprecipitation, we show that eukaryotic translation initiation factor 4G (eIF4G), in addition to its function in the cytoplasm, is a nuclear CBC-interacting protein. We demonstrate that eIF4G interacts with CBC in vitro and that, in addition to its cytoplasmic localization, there is a significant nuclear pool of eIF4G in mammalian cells in vivo. Immunoprecipitation experiments suggest that, in contrast to the cytoplasmic pool, much of the nuclear eIF4G is not associated with eIF4E (translation cap binding protein of eIF4F) but is associated with CBC. While eIF4G stably associates with spliceosomes in vitro and shows close association with spliceosomal snRNPs and splicing factors in vivo, depletion studies show that it does not participate directly in the splicing reaction. Taken together the data indicate that nuclear eIF4G may be recruited to pre-mRNAs via its interaction with CBC and accompanies the mRNA to the cytoplasm, facilitating the switching of CBC for eIF4F. This may provide a mechanism to couple nuclear and cytoplasmic functions of the mRNA cap structure
Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells
Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation
Adolescents with intellectual disability in residential child care: double vulnerability
Ministry of Economy and Competitiveness [PSI2012-33185, PSI2015-65229-R]; Severo Ochoa Program for Training in Research and Teaching in Principality of Asturias [BP16061
Interdisciplinary Teaching and Research at a Liberal Arts College on Computational Biology
ABSTRACT This paper focuses in presenting several aspects of the interdisciplinary collaboration in teaching and research at a liberal arts college. In particular, it presents courses and research projects in the computational biology area, which naturally call for collaborative work between faculty members from mathematics & computer science and biology departments. It further discusses (1) challenges arising when doing interdisciplinary work, (2) the interaction between interdisciplinary teaching, research, and communication, (3) possible outcomes of such interdisciplinary training for both students and faculty members, and (4) how interdisciplinary training fits within the liberal arts philosophy
An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm
Thoracic aortic aneurysm (TAA) has been associated with mutations affecting members of the TGF-β signaling pathway, or components and regulators of the vascular smooth muscle cell (VSMC) actomyosin cytoskeleton. Although both clinical groups present similar phenotypes, the existence of potential common mechanisms of pathogenesis remain obscure. Here we show that mutations affecting TGF-β signaling and VSMC cytoskeleton both lead to the formation of a ternary complex comprising the histone deacetylase HDAC9, the chromatin-remodeling enzyme BRG1, and the long noncoding RNA MALAT1. The HDAC9–MALAT1–BRG1 complex binds chromatin and represses contractile protein gene expression in association with gain of histone H3-lysine 27 trimethylation modifications. Disruption of Malat1 or Hdac9 restores contractile protein expression, improves aortic mural architecture, and inhibits experimental aneurysm growth. Thus, we highlight a shared epigenetic pathway responsible for VSMC dysfunction in both forms of TAA, with potential therapeutic implication for other known HDAC9-associated vascular diseases
Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis
Background: Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. Methods: AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. Findings: AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. Interpretation: sAXL appears as a biomarker for early detection of PDAC and PDAC–CP discrimination that could accelerate treatment and improve its dismal prognosis. Funding: This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya. © 2021 The Author(s
Quality of life of patients with metastatic pancreatic adenocarcinoma initiating first-line chemotherapy in routine practice
Despite advances in surgery, radiotherapy, and chemotherapy, pancreatic adenocarcinoma often progresses rapidly and causes death. The physical decline of these patients is expected to impact their quality of life (QoL). Therefore, in addition to objective measures of effectiveness, the evaluation of health-related QoL should be considered a matter of major concern when assessing therapy outcomes. Observational, prospective, multicenter study including patients with metastatic pancreatic adenocarcinoma who started first-line chemotherapy in 12 Spanish centers. Treatment and clinical characteristics were recorded at baseline. Patients' health-related quality of life, ECOG, and Karnofsky index were measured at baseline, at Days 15 and 30, and every four weeks up to 6 months of chemotherapy. Health-related quality of life was measured using the EORTC-QLQ-C30 and EQ-5D questionnaires. Other endpoints included overall survival and progression-free survival. The study sample included 116 patients (median age of 65 years). Mean (SD) scores for the QLQ-C30 global health status scale showed a significant increasing trend throughout the treatment (p = 0.005). Patients with either a Karnofsky index of 70-80 or ECOG 2 showed greater improvement in the QLQ-C30 global health status score than the corresponding groups with better performance status (p ≤ 0.010). Pain, appetite, sleep disturbance, nausea, and constipation significantly improved throughout the treatment (p < 0.005). Patients with QLQ-C30 global health status scores ≥50 at baseline had significantly greater overall survival and progression-free survival (p = 0.005 and p = 0.021, respectively). No significant associations were observed regarding the EQ-5D score. Most metastatic pancreatic adenocarcinoma patients receiving first-line chemotherapy showed an increase in health-related quality of life scores throughout the treatment. Patients with lower performance status and health-related quality of life at baseline tended to greater improvement. The EORTC QLQ-C30 scale allowed us to measure the health-related quality of life of metastatic pancreatic adenocarcinoma patients receiving first-line chemotherapy
A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations
The removal of methyl orange using coal fly ash, which is a widely available low-cost adsorbent, has been investigated. Adsorption studies for dye removal were conducted using various configurations such as batch, column and heap adsorption at various temperatures and adsorbent dosages at neutral pH. The Langmuir, Freundlich and Tempkin isotherm models were used to describe the process. The Freundlich model best represented the adsorption. Kinetic studies show the adsorption followed pseudo-second-order kinetics. Thermodynamic studies show that the process is spontaneous, endothermic and random. Column configuration was found to be the most efficient with a dye removal percentage of 99.95%, followed by heap adsorption at 99.25% removal and lastly batch configuration with 96.68% removal. Economic analysis shows that column operation would be the most effective for practical implementation
Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information
<p>Abstract</p> <p>Background</p> <p>The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes.</p> <p>Results</p> <p>We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality.</p> <p>Conclusion</p> <p>We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality.</p
- …
