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Abstract The removal of methyl orange using coal

fly ash, which is a widely available low-cost adsor-

bent, has been investigated. Adsorption studies for dye

removal were conducted using various configurations

such as batch, column and heap adsorption at various

temperatures and adsorbent dosages at neutral pH. The

Langmuir, Freundlich and Tempkin isotherm models

were used to describe the process. The Freundlich

model best represented the adsorption. Kinetic studies

show the adsorption followed pseudo-second-order

kinetics. Thermodynamic studies show that the pro-

cess is spontaneous, endothermic and random. Col-

umn configuration was found to be the most efficient

with a dye removal percentage of 99.95%, followed by

heap adsorption at 99.25% removal and lastly batch

configuration with 96.68% removal. Economic anal-

ysis shows that column operation would be the most

effective for practical implementation.

Keywords Methyl orange �Coal fly ash �Adsorption
studies � Batch � Column � Heap adsorption

Introduction

A very important aesthetic quality of textiles in the

modern world today is colour. Manufacturing and the

use of various dyes are well-established industrial

processes. However, the toxic nature of these dyes is

becoming a growing environmental concern which

needs to be addressed. Synthetic dyes are released

from a variety of industries such as textiles, paper,

pulp and dyestuff manufacturing (Banerjee et al.

2014), making them one of the largest environmental

polluters. Sun et al. (2010) reports that dyes account

for approximately 100 tons of waste annually.

According to the World Health Organization, by

2025 half of the world’s population will be living in

water-scare areas (WHO 2017). Given these current

water shortage problems and poor water quality,

especially in Africa, the organic pollutants released

from residual dye effluents are threatening the long-

term sustainability of water. In addition to dye

effluents being aesthetically unappealing, they have

high chemical and biological oxygen demands

(Robinson et al. 2001). These organic pollutants are

toxic to aquatic life as potentially carcinogenic and

mutagenic compounds are produced which are excep-

tionally harmful to the environment (Banat et al.

1996). Given these harmful effects, dye removal

techniques are an essential and necessary step in

wastewater treatment.

Residual dyes in wastewater effluents make con-

ventional treatment methods difficult for numerous
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reasons, owing to their complex aromatic structure

which is resistant to microbial degradation. This can

result in treated effluents still being highly coloured

(Visa et al. 2010). Multiple treatment methods are

commercially available, and one such method that is

commonly implemented is adsorption. It has been

proved to be one of the most effective ways of colour

removal due to simplicity and ease of operation

(Ghaedi et al. 2012). However, adsorbents such as

activated carbon are often costly, making this tech-

nique unattractive. This has promoted research into the

use of other low-cost adsorbents such as coal fly ash.

Coal fly ash, which is a by-product produced during

the combustion of coal in the electricity generation

industry accounts for million tons of waste annually

worldwide, and in South Africa alone amounts to more

than 30 million tons annually (Escom 2017). If viable

for colour removal, it would be an excellent low-cost

adsorbent. This adsorbent is available in abundance

and is creating an environmental concern by being

disposed of in landfill sites. Coal fly ash is currently

being investigated as an adsorbent using batch

configuration under various operating conditions such

a pH, temperature, stirring speed, adsorbent dosage

and initial dye concentration. It was found to have

good adsorption capacity due to the presence of SiO2,

TiO2 and the remaining unburnt carbon content in the

ash (Mohan et al. 2002; Wang and Wu 2006). Studies

have shown that pre-treatment of the coal fly ash using

physical and chemical methods can improve the

adsorption capacity, although this would increase the

operating costs of such procedures (Wang and Zhu

2005). Banerjee et al. (2014) investigated the adsorp-

tion of methylene blue using acid-activated coal fly

ash, which was found to have a high adsorption

capacity. Wang et al. (2006) evaluated the effect of

NaOH to modify coal fly ash for methylene blue

removal and found a 25% increase in its adsorption

capacity.

Dye removal techniques have been researched

extensively over the past few years; however, very

few of these techniques have been implemented by

wastewater treatment companies owing to the high

cost, low efficiency and inapplicability for a variety of

dyes. The current research aims to address this

problem and pose a cost-effective, efficient manner

of colour removal using a cheap, widely available

adsorbent.

This work is beneficial as the removal of an anionic

dye has seldom been investigated. Batch configura-

tions have been investigated extensively; however,

few studies have been conducted to investigate the

adsorption capacity using a continuous column oper-

ation or heap adsorption. These operating configura-

tions could potentially have lower operating costs,

higher adsorption capacities and be more efficient on a

larger scale. The present work also determined the

process activation energy, thermodynamic parame-

ters, adsorption isotherms and kinetics using methyl

orange (MO) dye.

Materials and methods

Adsorbate (methyl orange)

All chemicals and reagents used were of analytical

reagent (AR) grade and were used without further

purification. MO is an anionic azo dye available as

bright orange crystals and was obtained from ACE

Chemicals. MO stock solution (1000 mg l-1) was

prepared by dissolving 1 g in 1000 ml of distilled

water, and working solutions of 1–14 mg l-1 were

prepared daily using serial dilution.

Adsorbent (coal fly ash)

Coal fly ash was obtained from the Lethabo power

station in South Africa. The coal fly ash was washed

with distilled water to remove soluble inorganic

material and surface dust particles. Characterization

of the coal fly ash was done through XRD and XRF.

The elemental composition is summarized in Table 1.

XRD analysis was conducted using a Bruker D2

Phaser X-ray Diffractometer quipped with Cu K a
X-Ray source operating at 30 kV and 10 mA. From

Fig. 1, the XRD pattern indicates that the mineral

phases of the coal fly ash consist of quartz and mullite.

The broad peak observed between 2 h = 2� and 2

h = 30� indicates that the amorphous phases in the

coal fly ash contributes more than 50% of the total

mass. This amorphous phases consists of silica and

alumina in a glass matrix. The Lethabo coal fly ash has

been analysed with regards to only major and minor

elements. The analysis has not considered the effect of

trace amounts of heavy metals. However, the coal fly

ash does not contain any significant amounts of heavy
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metals or radioactive substances. The presence of

these elements is dependent on the geological source

of the coal used. Specifically, in South Africa this coal

fly ash is widely used in the cement making industry,

thus implying it is safe to use (Potgieter et al. 2002).

Studies have also found that during the cement making

process, cement addition had positive effect on the

immobilization of heavy metals. However, heavy

metal leaching is not a concern in the treated

wastewater, except if the pH of the effluent is highly

acidic (Wang et al. 2016; Madzivire et al. 2017;

Izquierdo and Querol 2012).

Analysis of Lethabo coal fly ash was done by Van

der Merwe et al. (2014). Particle size distribution

analysis found the mean particle size to be 4.9 lm
with 90% of the sample by volume having a particle

size smaller than 14.9 lm. The surface area found

using Brunauer–Emmett–Teller (BET) analysis was

found to be 1.52 m2 g-1.

0.2.3 Batch adsorption tests

Batch adsorption tests were conducted using 5 g of

coal fly ash in 150 ml of dye solution at a solid-to-

liquid ratio of 1:30. The mixture was continually

agitated at a speed of 400 rpm using a magnetic stirrer.

Continuous readings were taken for an hour and

equilibrium readings after a period of 24 h. The

mixture was centrifuged to remove residual adsorbent

particles and the absorbance measured. Residual dye

concentrations were calculated using a calibration

curve prepared at the maximum wavelength of

464 nm with a SQ-2800 UV–Vis spectrophotometer.

Dye concentrations below 4.3 9 10–2 mM were

prepared to ensure that the absorbance remained

below 1 and within the linear range of the calibration

curve. This process was repeated over a range of

temperatures (25–45 �C) in order to determine the rate

constants and order of the reaction. Adsorption

isotherms were determined in a similar manner by

varying the absorbent dosage from 3–20 g. All other

parameters such as pH, temperature and agitation

speed remained constant, and only one variable was

varied at a time. The amount of dye adsorbed at

equilibrium (qe) as well as the removal percentages

were calculated using Eqs. (1) and (2)

qe ¼
Co � Ceð ÞVSol

W
ð1Þ

Removal % ¼ Co � Ceð Þ
CO

� 100% ð2Þ

where Co and Ce are the initial and equilibrium dye

concentrations (mg l-1), W is the mass of adsorbent

(g) and V is the volume of dye solution (l). Similarly,

from the batch adsorption tests the adsorption kinetics,

isotherms and thermodynamic parameters can be

determined.

Column adsorption tests

Column adsorption tests were conducted using the

same dye concentrations as that of the batch tests.

Columns were set up using burettes packed with coal

fly ash, ranging from 3–20 g, of varying bed heights

between 5 and 40 cm. The column had an internal

diameter 1.5 cm. Dye solution was continuously

added and allowed to pass through the column. A

solid-to-liquid ratio of 1:5 was used.

Heap adsorption tests

Heap adsorption tests were conducted using 180 g of

coal fly ash. Dye solution was continuously sprayed on

the surface of the coal fly ash. Three washing cycles

Table 1 Lethabo fly ash composition

Composition Percentage (%)

SiO2 52.59

Al2O3 34.59

Fe2O3 3.15

TiO2 1.68

MnO 0.04

MgO 1.06

CaO 4.08

Na2O 0.17

K2O 0.60

P2O5 0.28

Cr2O3 0.04

NiO 0.02

V2O5 0.04

ZrO2 0.08

LOI 1.4
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were used per batch of coal fly ash with a solid-to-

liquid ratio of 1:5.

Results and discussion

Preliminary experimental runs were conducted in

triplicate to ensure reproducibility and due to good

reproducibility; the remaining experiments were con-

ducted in duplicate andmean data values were used for

analysis. A preliminary experimental run was also

conducted under UV light; however, no significant

change in results was observed. The latter experimen-

tal runs were conducted at ambient conditions.

Effect of temperature

Batch adsorption tests were conducted in the range of

20–40 �C. Figure 2 shows that the dye removal

percentages increase with an increase in temperature

which indicates that the adsorption process is

endothermic in nature. This may be attributed to the

increased mobility of the dye molecules and an

increase in the number of active sites due to the

temperature increase. Higher temperatures are also

known to cause an enlargement of pore size of the

remaining active carbon present in the coal fly ash,

which increases the adsorption capacity (Senthilku-

maar et al. 2006).

Fig. 1 XRD Analysis of Lethabo fly ash
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Adsorption kinetics

Batch adsorption tests were used to determine the

adsorption kinetics, namely whether the process

follows Lagergren pseudo-first-order kinetics (Lager-

gren 1898) or pseudo-second-order kinetics (Ho and

McKay 1999) as evaluated according to Eqs. (3) and

(4), respectively.

ln qe � qtð Þ ¼ ln qeð Þ � k1t ð3Þ

t

qt
¼ 1

k2

� �
1

q2e

� �
þ 1

qe
t ð4Þ

where qe is the amount of dye adsorbed at equilibrium

(mg g-1), qt is the amount of dye adsorbed at time t

(mg g-1), k1 is the pseudo first order rate constant

(min-1), and k2 is second order rate constant

(g mg-1 min-1). A linear plot of ln qe � qtð Þ versus t
will yield a straight line of slope equal to k1 and

intercept equal to ln qeð Þ if the adsorption follows

pseudo-first-order kinetics. A linear plot of t
qt
versus t

will yield a straight line of slope equal to 1
qe

and

intercept equal to 1
k2q2e

if the adsorption follows pseudo-

second-order kinetics. Lagergren plots for different

temperatures were plotted in Figs. 3 and 4 below. It

can be seen that the pseudo-second-order plot follows

a linear profile the entire operating period with a good

correlation coefficient (R2[ 0.99). The first-order

plot does not follow a linear profile. This is expected as

generally only the initial contact period of approxi-

mately 30 min follows a linear relationship (Umpuch

and Sakaew 2013). It is also seen that the rate constant

decreases with an increase in temperature which is

expected for physisorption processes (Tunali et al.

2006). Table 2 summarizes the Lagergren model

parameters.

Adsorption isotherms

Adsorption studies are important for solid–liquid

processes as this determines the interaction between

the adsorbent and adsorbate. The adsorption isotherms

were analysed according to the Langmuir, Freundlich

and Tempkin models.

Langmuir isotherm

The Langmuir model is used to model monolayer and

uniform adsorption on finite adsorption sites. It is also

assumed that the adsorbed molecules do not interact

with neighbouring sites ( Belhachemi and Addoun

2011). The Langmuir model is represented by Eq. (5)

(Langmuir 1916).

Ce

qe
¼ Ce

qm
þ 1

kLqm
ð5Þ

where qe is the maximum adsorption capacity at

equilibrium (mg g-1), Ce is equilibrium concentra-

tions of the adsorbate (mg l-1), qm is the theoretical

maximum adsorption capacity for the process
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(mg g-1), kL is the Langmuir adsorption constant

related to the free energy of adsorption (l mg-1). A

plot of Ce

qe
versus Ce will yield a straight line of slope

equal to 1
qm

and intercept equal to 1
kLqm

if Langmuir

adsorption prevails.

Freundlich isotherm

The Freundlich model thoroughly represents multi-

layer adsorption on heterogeneous surfaces. It is not

restricted to the formation of the monolayer and is

represented by Eq. (6) (Freundlich 1906).

ln qe ¼ lnKF þ
1

n

� �
lnCe ð6Þ

where KF is a Freundlich constant indicative of the

relative adsorption capacity of the adsorbent

(mg g-1), 1
n is the heterogeneity factor indicating the

favourability and capacity of the system (Piccin et al.

2011). A value of n\ 1 indicates unfavourable

adsorption, n[ 1 indicates favourable adsorption

and equal to 1 indicates the adsorption process is

linear. A plot of ln qe versus lnCe will yield a straight

line of slope equal to 1
n and intercept equal to lnKF from

which the constants can be determined if the process

obeys the Freundlich isotherm.

Temkin isotherm

The Temkin model considers the effects of some

indirect adsorbate/adsorbate interactions in adsorption

isotherms (Piccin et al. 2011). The Temkin model is

presented by Eq. (7).

qe ¼
RT

b
lnKT þ

RT

b
lnCe ð7Þ

where KT is the equilibrium binding constant

(l mol-1), b is a constant related to adsorption heat

(J mol-1), R is the universal gas constant

(8.314 J mol-1 K-1), and T is the absolute tempera-

ture (K). A plot of qe versus lnCe will yield a straight

line of slope equal to RT
b and intercept equal to RT

b lnKT

from which the constants can be determined if the

adsorption follows the Temkin model.

Figures 5, 6, 7, 8, 9 and 10 show the respective

Langmuir, Freundlich and Temkin isotherms with a

variation in adsorbent dosages (1.5–20 g) at neutral

pH and 22 �C when using batch and column config-

urations. Upon closer inspection of the R2 value, the

Freundlich model most accurately represents the

adsorption process of both the batch and column

configuration. However, the Langmuir model also has

a good R2 value. However, due to a negative slope

resulting in a negative value of the Langmuir constant

(kL) being physically impossibly, this model is not an

accurate representation and the adsorption does not

follow this isotherm (Kiurski et al. 2011). The

constant, n, from the Freundlich model is greater than

1, which indicates favourable adsorption. The nega-

tive value of the Temkin constant, which signifies the

heat of adsorption, also indicates that the process is

endothermic. The constant parameters were all deter-

mined by the respective isotherm plots and are

summarized in Table 3.

Table 2 Lagergren first-

order and pseudo-second-

order kinetic adsorption

parameters

Lagergren first order Lagergren pseudo second order

k1 (min-1) R2 qe k2 (g mg-1 min-1) R2 qe

20 �C 0.013 0.9805 0.17 0.33 0.9929 0.22

25 �C 0.017 0.9671 0.15 0.27 0.9909 0.24

30 �C 0.012 0.9796 0.15 0.23 0.998 0.26

35 �C 0.015 0.9674 0.16 0.21 0.9951 0.27

40 �C 0.12 0.8379 0.15 0.18 0.9996 0.30

0
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Fig. 5 Langmuir batch isotherm

123

Environ Geochem Health



Thermodynamics

The thermodynamics of the adsorption process can be

analysed in order to determine the mechanism, such as

whether the process is physical or chemical,

spontaneous or non-spontaneous and exothermic or

endothermic. Adsorption studies need to be conducted

at different temperatures in order to determine

parameters such as the activation energy (Ea), change

in standard free energy (DG�), enthalpy (DH�) and

entropy (DS�). These parameters can be estimated

using Eqs. (8), (9) and (10).

KC ¼ qe
Ce

ð8Þ

lnKc ¼
DS

�

R
� DH

�

RT
ð9Þ

DG
� ¼ �RTlnKc ð10Þ
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Table 3 Langmuir, Freundlich and Tempkin adsorption isotherm constants

Langmuir Freundlich Tempkin

kL qm (mg g-1) R2 kF (mg/g) n R2 kT b (kJ/mol) R2

Batch - 2.32 0.25 0.9923 0.42 4.16 0.969 1 - 29.00 0.982

Column - 0.69 0.69 0.7608 0.17 1.19 0.9694 1 - 4.10 0.8558
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where R is the universal gas constant (8.314 J mol-1 -

K-1), T is the absolute temperature (K), DH� is the

standard enthalpy (kJ mol-1), DS� is the standard

entropy (kJ mol-1), and DG� is the standard free

energy change (kJ mol-1). Values for DH� and DS�
can be calculated from the slope and intercept of a

linear plot of lnKc and 1
T (Banerjee et al. 2013).

Estimated values for these parameters are tabulated

and shown in Table 4.

The negative value of DG� for all temperatures

indicates that the adsorption process is spontaneous.

The positive DH� value as well as the increase in DG�
values with an increase in temperature further shows

the process is endothermic, as adsorption is favoured

at higher temperatures. This is most likely due to the

fact that the mobility of the adsorbate increases with

an increase in temperature and the affinity of the

adsorbate increases at higher temperatures (Saha and

Chowdhury 2011). A positive DS� suggests that the

process follows a dissociative mechanism, i.e. that

there is an affinity of the adsorbent for the adsorbate,

as well as an increases in the degree of freedom

accompanied by an increase in randomness at the

solid–liquid interface (Saha and Chowdhury 2011).

The magnitude of DG� and DH� indicates that the

process is physical as DG� is in the range of

0–20 kJ mol-1 (Salam et al. 2012) and DH� in the

range of 2.1–20.9 kJ mol-1 (Liu and Liu 2008).

Similar findings were obtained by Jalil et al. (2010)

and Yang et al. (2016) for other low-cost adsorbents

using MO.

The pseudo-second-order rate constants from the

Lagergren model (k2) evaluated at different tempera-

tures using a batch configuration were used to

determine the activation energy of the adsorption

process by applying the Arrhenius equation given by

Eq. (11). A plot of ln k versus 1
T is shown in Fig. 11.

ln k2 ¼ lnA� Ea

RT
ð11Þ

where Ea is the activation energy (kJ mol-1) and A is

the Arrhenius factor (g mol-1 s-1).

The activation energy was calculated to

be - 20.82 kJ mol-1. This value is fairly small,

which is an indication that the adsorption may not be

very sensitive to the experimental temperature range.

The low value (Ea\ 42 kJ mol-1) indicates that the

adsorption is physical (Umpuch and Sakaew 2013).

The negative activation energy implies that the rate of

adsorption decreases with an increase in temperature

which leads to a reduction in the probability of the

colliding molecules being captured by the adsorbent.

This negative value also indicates that energy barriers

are absent in this process (Kobiraj et al. 2012).

Column, batch and heap adsorption comparison

Figure 12 shows the dye removal comparison between

batch and column operation using the same solution

volume, adsorbent dosage as well as pH.

It can be seen that the column configuration has a

much larger dye removal percentage. This high

removal efficiency on the column operation was

largely dependent on the bed height, with the largest

adsorbent dosage having the greatest removal effi-

ciency due to longer residence times and increased

number of binding sites (Olgun et al. 2013). Removal

percentages became stagnant beyond a certain mass of

adsorbent as binding sites were restricted due to tight

column packing (Chen et al. 2011).

Heap adsorption showed an overall dye removal of

99.25% after 3 washing cycles compared to a column

with a maximum removal of 99.95% and batch with

96.68%. Both the column and heap adsorption are

comparable in performance. Each configuration has

their own drawbacks, as heap adsorption requires a

large adsorbent mass and area, whereas column

operations have long residence times and batch

operations are energy intensive.

Table 4 Thermodynamic

parameters for the

adsorption of MO on fly ash

at 25 �C

Temp (�C) DG� (kJ mol-1) DH� (kJ mol-1) DS� (kJ mol-1)

20 - 9.36 13.36 77.75

25 - 9.84

30 - 10.29

35 - 10.68

40 - 10.88
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Adsorption capacity

The maximum adsorption capacity of the column

(8.9 mg g-1) is higher than that of the batch process

(3.9 mg g-1) under the same operating conditions.

This may be due to the surface of coal fly ash, which

favours solid-state diffusion relative to the batch

configuration. Similar results of higher column

adsorption capacities were reported by (Gupta et al.

2001). Heap adsorption has an intermediate adsorption

capacity of 4.0 mg g-1. Fairly low adsorption capac-

ities are indicative of an anionic dye since the presence

of a negatively charged carboxyl group, which is an

important functional group present in industrial efflu-

ents, inhibits the adsorption of anionic dyes (Gong

et al. 2005). Table 5 shows a comparison of adsorption

capacities found by similar studies using an anionic

dye under batch configuration.

Adsorption capacities differ drastically due to

different sample pre-treatment, pH, contact times

and temperatures. One major difference is the particle

size of the coal fly ash. Since a small surface area of

1.42 m2 g-1 was found, there were less active sites

present for adsorption resulting in the low adsorption

capacity. However, in comparison, the adsorption

capacity of coal fly ash is in a fairly intermediate range

and can be considered a viable alternative for dye

removal.
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Fig. 11 Activation energy plot for the adsorption on MO on fly
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configurations

Table 5 Adsorption capacity comparison between varying adsorbents and anionic dyes

Adsorbent Anionic dye Adsorption capacity (mg g-1) References

Fly ash Methyl orange 3.9 Present study

Fly ash Reactive blue 171 3.75 Banerjee et al. (2014)

Carbon nanotubes Methyl orange 44.16 Zhao et al. (2013)

Peanut Hull Sunset yellow 13.99 Wang and Zhu (2005)

Coal fly ash-NaOH Acid red 1 12.66 Hsu (2008)

Fly ash Acid red 91 1.75 Ramakrishna and

Viraraghavan (1997)

Chitosan beads Remazol blue 201.6 Pereira et al. (2017)

Cross-linked chitosan Methyl orange 89.29 Huang et al. (2017)

Eggshells Congo red 49.5 Abdel-Khalek et al.

(2017)

ZnO nanoparticles Congo red 71.43 Kataria and Garg

(2017)
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Economic evaluation

Despite column operation being the most efficient dye

removal technique, each method has various economic

constraints. On the assumption that 100 Ml of water

needs to be treated daily, with dye concentration of

500 ppm to be reduced to 1 ppm, Table 6 summarizes

the costs and mass required for each operation. Coal

fly ash was assumed to have no cost associated with it,

and only logistical costs such as transportation need to

be considered and were estimated based on the mass of

adsorbent required (Freight Rate Calculator 2017).

The mass of coal fly ash required is determine from the

respective adsorption capacities.

Column operation is the cheapest due to the smaller

adsorbent dosage required. Various government grants

in South Africa are awarded to wastewater treatment

plants such as the Regional Bulk Infrastructure Grant

which allocates an excess of 5 billion rand to various

wastewater treatment companies (van Zyl et al. 2016).

Other revenue sourced from industries is the premium

paid to treat or dispose wastewater effluents. While the

use of coal fly ash seems feasible, further studies at

larger scale, such as a pilot plant, needs to be

conducted.

Conclusions

The study shows that coal fly ash, which is often

applied for cationic dye removal, is also a suitable ad-

sorbent for the removal of the anionic dye, methyl

orange. The adsorption process follows pseudo-sec-

ond-order kinetics and the Freundlich isotherm most

accurately represents the adsorption for both batch and

column configurations. Upon analysis of the thermo-

dynamic parameters, negative values of the Gibbs free

energy change indicate the process is spontaneous.

Positive enthalpy and entropy changes indicate that

the adsorption is endothermic, random and a physical

process. The adsorption process has an activation

energy of - 20.82 kJ mol-1, suggesting that energy

barriers are very low or absent. Of the three config-

urations, dye adsorption is the highest using column

operation, followed by heap adsorption and lastly a

batch operation.
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