195 research outputs found

    Modelling spatial and inter-annual variations of nitrous oxide emissions from UK cropland and grasslands using DailyDayCent

    Get PDF
    This work contributes to the Defra funded projects AC0116: ‘Improving the nitrous oxide inventory’, and AC0114: ‘Data Synthesis, Management and Modelling’. Funding for this work was provided by the UK Department for Environment, Food and Rural Affairs (Defra) AC0116 and AC0114, the Department of Agriculture, Environment and Rural Affairs for Northern Ireland, the Scottish Government and the Welsh Government. Rothamsted Research receives strategic funding from the Biotechnology and Biological Sciences Research Council. This study also contributes to the projects: N-Circle (BB/N013484/1), U-GRASS (NE/M016900/1) and GREENHOUSE (NE/K002589/1).Peer reviewedPublisher PD

    A Self-consistent Model for Brown Dwarf Populations

    Get PDF
    We present a self-consistent model of the Milky Way to reproduce the observed distributions (spectral type, absolute J-band magnitude, effective temperature) and total velocity dispersion of brown dwarfs. For our model, we adopt parametric forms for the star formation history and initial-mass function, published evolutionary models, and theoretical age–velocity relations. Using standard Markov Chain Monte Carlo methods, we derive a power-law index of the initial-mass function of α = −0.71 ± 0.11, which is an improvement over previous studies. We consider a gamma-function form for the star formation history, though we find that this complex model is only slightly favored over a declining exponential. We find that a velocity variance that linearly increases with age and has an initial value of km s−1 best reproduces the total velocity dispersions. Given the similarities to main-sequence stars, this suggests brown dwarfs likely form via similar processes, but we recognize that the sizable uncertainties on σ0 preclude firm conclusions. To further refine these conclusions, we suggest that wide-field infrared imaging or low-resolution spectroscopic surveys, such as with the Nancy Grace Roman Space Telescope or Euclid, could provide large samples of brown dwarfs with robust spectral types that could probe the thickness of the thin disk. In this way, the number counts and population demographics could probe the same physical processes as with the kinematic measurements, however may provide larger samples and be subject to different selection biases

    Predicting field N2_{2}O emissions from crop residues based on their biochemical composition: A meta-analytical approach

    Get PDF
    Crop residue incorporation is a common practice to increase or restore organic matter stocks in agricultural soils. However, this practice often increases emissions of the powerful greenhouse gas nitrous oxide (N2_{2}O). Previous meta-analyses have linked various biochemical properties of crop residues to N2_{2}O emissions, but the relationships between these properties have been overlooked, hampering our ability to predict N2_{2}O emissions from specific residues. Here we combine comprehensive databases for N2_{2}O emissions from crop residues and crop residue biochemical characteristics with a random-meta-forest approach, to develop a predictive framework of crop residue effects on N2_{2}O emissions. On average, crop residue incorporation increased soil N2_{2}O emissions by 43% compared to residue removal, however crop residues led to both increases and reductions in N2_{2}O emissions. Crop residue effects on N2_{2}O emissions were best predicted by easily degradable fractions (i.e. water soluble carbon, soluble Van Soest fraction (NDS)), structural fractions and N returned with crop residues. The relationship between these biochemical properties and N2_{2}O emissions differed widely in terms of form and direction. However, due to the strong correlations among these properties, we were able to develop a simplified classification for crop residues based on the stage of physiological maturity of the plant at which the residue was generated. This maturity criteria provided the most robust and yet simple approach to categorize crop residues according to their potential to regulate N2_{2}O emissions. Immature residues (high water soluble carbon, soluble NDS and total N concentration, low relative cellulose, hemicellulose, lignin fractions, and low C:N ratio) strongly stimulated N2_{2}O emissions, whereas mature residues with opposite characteristics had marginal effects on N2_{2}O. The most important crop types belonging to the immature residue group – cover crops, grasslands and vegetables – are important for the delivery of multiple ecosystem services. Thus, these residues should be managed properly to avoid their potentially high N2_{2}O emissions

    The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50

    Get PDF
    The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in Spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our dataset covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of 4 in the U-band continuum and a factor of 2 in the H-beta line. Using standard cross-correlation techniques, we find that H-beta and H-gamma lag the V-band continuum by tau_cen = 10.64(-0.93,+0.82) and 8.43(-1.28,+1.30) days, respectively, while the lag of He II 4686 is unresolved. The H-beta line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f=5.25, the virial estimate of the black hole mass is (3.2+-0.5)*10^7 solar masses. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of broad-line region structure and dynamics.Comment: Accepted for publication in ApJ Letters. 6 pages, 4 figure

    Hubble Space Telescope Observations of Field Ultracool Dwarfs at High Galactic Latitude

    Get PDF
    We present a sample of 17 newly discovered ultracool dwarf candidates later than ~M8, drawn from 231.90 arcmin2 of {\it Hubble Space Telescope} Wide Field Camera 3 infrared imaging. By comparing the observed number counts for 17.5<J_125<25.5 AB mag to an exponential disk model, we estimate a vertical scale height of z_scl=290 +- 25 (random) +- 30 (systematic) pc for a binarity fraction of f_b=0. While our estimate is roughly consistent with published results, we suggest that the differences can be attributed to sample properties, with the present sample containing far more substellar objects than previous work. We predict the object counts should peak at J_{125}~24 AB mag due to the exponentially-declining number density at the edge of the disc. We conclude by arguing that trend in scale height with spectral type may breakdown for brown dwarfs since they do not settle onto the main sequence.Comment: 9 pages, 6 figures, 3 tables, accepted to ApJ (v2 is consistent with Referee changes

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad Line Region in Mrk 50

    Get PDF
    We present dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of 25\pm10 degrees above the plane. We also constrain the inclination angle to be 9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log10(f) = 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.Comment: Accepted for publication in ApJ. 8 pages, 6 figure

    Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    Get PDF
    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.Comment: Submitted to Phys. Rev. Let

    Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands

    Get PDF
    Publication History: Accepted - 8th January 2019; Published Online - 9th January 2019; Published - 15th April 2019Intensification of grasslands is necessary to meet the increasing demand of livestock products. The application of nitrogen (N) on grasslands affects the N balance therefore the nitrogen use efficiency (NUE). Emissions of nitrous oxide (N2O) are produced due to N fertilisation and low NUE. These emissions depend on the type and rates of N applied. In this study we have compiled data from 5 UK N fertilised grassland sites (Crichton, Drayton, North Wyke, Hillsborough and Pwllpeiran) covering a range of soil types and climates. The experiments evaluated the effect of increasing rates of inorganic N fertiliser provided as ammonium nitrate (AN) or calcium ammonium nitrate (CAN). The following fertiliser strategies were also explored for a rate of 320 kg N ha−1: using the nitrification inhibitor dicyandiamide (DCD), changing to urea as an N source and splitting fertiliser applications. We measured N2O emissions for a full year in each experiment, as well as soil mineral N, climate data, pasture yield and N offtake. N2O emissions were greater at Crichton and North Wyke whereas Drayton, Hillsborough and Pwllpeiran had the smallest emissions. The resulting average emission factor (EF) of 1.12% total N applied showed a range of values for all the sites between 0.6 and 2.08%. NUE depended on the site and for an application rate of 320 kg N ha−1, N surplus was on average higher than 80 kg N ha−1, which is proposed as a maximum by the EU Nitrogen Expert Panel. N2O emissions tended to be lower when urea was applied instead of AN or CAN, and were particularly reduced when using urea with DCD. Finally, correlations between the factors studied showed that total N input was related to Nofftake and Nexcess; while cumulative emissions and EF were related to yield scaled emissions

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter

    Challenges of accounting nitrous oxide emissions from agricultural crop residues

    Get PDF
    Crop residues are important inputs of carbon (C) and nitrogen (N) to soils and thus directly and indirectly affect nitrous oxide (N2O) emissions. As the current inventory methodology considers N inputs by crop residues as the sole determining factor for N2O emissions, it fails to consider other underlying factors and processes. There is compelling evidence that emissions vary greatly between residues with different biochemical and physical characteristics, with the concentrations of mineralizable N and decomposable C in the residue biomass both enhancing the soil N2O production potential. High concentrations of these components are associated with immature residues (e.g., cover crops, grass, legumes, and vegetables) as opposed to mature residues (e.g., straw). A more accurate estimation of the short-term (months) effects of the crop residues on N2O could involve distinguishing mature and immature crop residues with distinctly different emission factors. The medium-term (years) and long-term (decades) effects relate to the effects of residue management on soil N fertility and soil physical and chemical properties, considering that these are affected by local climatic and soil conditions as well as land use and management. More targeted mitigation efforts for N2O emissions, after addition of crop residues to the soil, are urgently needed and require an improved methodology for emission accounting. This work needs to be underpinned by research to (1) develop and validate N2O emission factors for mature and immature crop residues, (2) assess emissions from belowground residues of terminated crops, (3) improve activity data on management of different residue types, in particular immature residues, and (4) evaluate long-term effects of residue addition on N2O emissions
    corecore