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Abstract

We present a self-consistent model of the Milky Way to reproduce the observed distributions (spectral type,
absolute J-band magnitude, effective temperature) and total velocity dispersion of brown dwarfs. For our model,
we adopt parametric forms for the star formation history and initial-mass function, published evolutionary models,
and theoretical age–velocity relations. Using standard Markov Chain Monte Carlo methods, we derive a power-law
index of the initial-mass function of α=−0.71± 0.11, which is an improvement over previous studies. We
consider a gamma-function form for the star formation history, though we find that this complex model is only
slightly favored over a declining exponential. We find that a velocity variance that linearly increases with age and
has an initial value of 9.00 9.0

11s = -
+ km s−1 best reproduces the total velocity dispersions. Given the similarities to

main-sequence stars, this suggests brown dwarfs likely form via similar processes, but we recognize that the sizable
uncertainties on σ0 preclude firm conclusions. To further refine these conclusions, we suggest that wide-field
infrared imaging or low-resolution spectroscopic surveys, such as with the Nancy Grace Roman Space Telescope
or Euclid, could provide large samples of brown dwarfs with robust spectral types that could probe the thickness of
the thin disk. In this way, the number counts and population demographics could probe the same physical
processes as with the kinematic measurements, however may provide larger samples and be subject to different
selection biases.

Unified Astronomy Thesaurus concepts: Brown dwarfs (185)

1. Introduction

Brown dwarfs represent the substellar extension of the main
sequence, and are canonically defined as objects that lack
sufficient mass to sustain hydrogen fusion. Consequently, these
objects cool throughout their lifetimes, despite other properties
(such as mass) remaining roughly constant, which leads to the
well-known age–mass degeneracy: a brown dwarf of a given
temperature (or spectral type) can have range of ages and
masses (e.g., Burrows et al. 1989). This strong coupling
between the age and temperature makes brown dwarfs a viable
standard clock with which we can examine the history of the
Milky Way.

The distribution of observed properties (such as spectral type,
effective temperature, absolute magnitude, etc.) are a cornerstone
observation of stellar population studies. But since the brown
dwarfs evolve considerably, the present-day distributions are
sensitive to the initial, fundamental distributions and assumptions
on the evolutionary models. Specifically, various authors have
explored the relationship between a parameterized initial-mass
function (IMF) and observed distributions (such as the luminosity
function; see, e.g., Burgasser 2004; Allen et al. 2005). Although
this is only an indirect probe of the IMF, it does provide some
support for/against particular functional forms. Kirkpatrick et al.
(2021) describe how different brown dwarf formation scenarios

are manifested in different functional forms of the IMF. In brief, a
power-law indicates a scale-free formation, while a skewed
normal (or log-normal) distribution implies multiplicative pro-
cesses and/or multiple intertwined mechanisms.
In addition to the directly observable distribution functions, the

kinematics of the brown dwarf population provide a unique
glimpse into their formation and evolutionary history. It has long
been known that the velocity dispersion of a stellar system will
increase with time (e.g., von Hoerner 1959; Mayor 1974;
Wielen 1977). Specifically, the thin disk of the Milky Way has
been observed to increase in thickness or vertical velocity
dispersion throughout its lifetime (sometimes referred to as disk
heating), and various authors have proposed several driving
mechanisms, such as scattering off molecular clouds (Spitzer &
Schwarzschild 1951), minor mergers (Quinn et al. 1993), the
presence of a central bar (Grand et al. 2016), disk warping
(Mackereth et al. 2019), etc. Whatever the causes may be, their
cumulative effects (increasing velocity dispersion or disk
thickness with population age or spectral type) have been well-
studied (e.g., Dehnen & Binney 1998; Aumer & Binney 2009),
and the initial velocity dispersions probe the state of the formation.
For example, Reipurth & Clarke (2001) suggest that, as stellar
systems are forming in their birth clouds, the lowest-mass objects
are preferentially ejected via dynamical interactions, which
ultimately limits the mass they can accumulate during their
formation. Consequently, it is natural to expect the brown dwarf
populations to have initial velocity dispersions higher than those
of main-sequence stars. Building on prior studies of brown dwarf
kinematics (e.g., Schmidt et al. 2007; Zapatero Osorio et al. 2007;
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Burgasser et al. 2015), Ryan et al. (2017) suggest that, because
brown dwarfs cool over time, their velocity dispersions (or disk
vertical scale height) should exhibit strong deviations from the
trends set by their slightly more massive, main-sequence cousins.
A chief goal of the present work is to expand on the work of Ryan
et al. (2017) and use published distribution functions and
kinematics of observed brown dwarfs to understand their
formation history.

This paper is organized as follows: Section 2 describes our
model for the brown dwarf disk population, Section 3 catalogs
the published observations that we have adopted, Section 4
details our data modeling, Section 5 discusses our key results,
and Section 6 gives our conclusions. We quote all magnitudes
in the Vega system.

2. Galaxy Model

We assume that the creation function of brown dwarfs is a
separable function of mass (m) and time (t):

C t m dt dm t m dt dm, , 1y f=( ) ( ) ( ) ( )

where ψ(t) is the star formation history (SFH) and f(m) is the
IMF. We adopt parametric forms for each distribution:

m dm
m

m
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m
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but since the number of brown dwarfs is given as the product of
these distributions, we cannot simultaneously constrain f* and
ψ*. Therefore, we fix ψ* such that ∫ψ(t) dt= 1, which leaves
four free parameters associated with the formation of brown
dwarfs: (f*, α, β, t*). The parameter m* is degenerate with the
IMF normalization, therefore we fix m* = 0.1 Me. To avoid
confusion, we will define the time since the formation of the
Milky Way disk as t and the age of a given population as τ, but
these are trivially related as t+ τ= τMW, where τMW is the
age of the Milky Way disk. We assume τMW= 10 Gyr to
be consistent with assumptions in previous works (e.g.,
Burgasser 2004; Allen et al. 2005; Kirkpatrick et al. 2019). In
Appendix A and Appendix B, we briefly discuss results for a
log-normal IMF and changes to the assumed age of the Milky
Way disk, respectively. This form of the SFH in Equation (3)
provides a highly flexible family of distributions that can
reproduce a constant (β= 0 and t*? τMW), a monotonically
decreasing (β= 0 and t* > 0) or increasing (βt*� τMW), or
something peaked7 for t0 MWb t< *( ) . In Figure 1, we
illustrate the range of SFHs this functional form can generate.

Here, our goal is to model the measured distributions of
various observables, and mass is seldom a directly measured
quantity. Therefore, we must transform the mass function to a
relevant observable. However, because brown dwarfs are
constantly cooling, this transformation must be time-depen-
dent. Therefore, we transform from mass to temperature as a
function of age:

T dT m
dT m

dm
dm,

,
, 4f t f

t
=( ) ( ) ( ) ( )

where T(τ, m) is the cooling model. We adopt the Burrows
et al. (1997) models because they span the broadest range of
mass, age, and temperature (see Figure 2), which restrict our
creation function to 10−3� t� τMW and 0.0005�m� 0.1
Me. We have examined other cooling models (Burrows et al.
2001; Baraffe et al. 2003; Saumon & Marley 2008; Marley &
Saumon 2020; Phillips et al. 2020, but see Appendix C for
more details), and find results similar to those presented below,
but over a narrower range of observed parameters. The
Burrows et al. (1997) models assume solar metallicity,
therefore that assumption is implicit in our work as well. The
temperature distribution is given as a convolution with the
SFH:

T dT T t dt, . 5
0

MW

òf f t y=
t

( ) ( ) ( ) ( )

Finally, the temperature distribution can be transformed to any
observable X= X(T) as:

Figure 1. Illustrative forms of our adopted SFH parameterization. Each SFH is
normalized to its respective peak, but they can exhibit a range of properties:
approximately constant (blue line), monotonically decreasing (orange line),
peaked (green line), and monotonically increasing (red line).

Figure 2. Brown dwarf temperatures from Burrows et al. (1997). Each line
represents a different initial mass, as indicated by a color bar.

7 The peak star formation rate will occur at t tmax b= *.
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X dX T
dX

dT
dT , 6f f=( ) ( ) ( )

which can be directly compared to the observations.
To model the kinematics, we employ the age–velocity

dispersion relations (AVR) derived by Wielen (1977):

C 7x x w
2

,0
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3

2
8x x x
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3s t s g t= +( ) ( )

e
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3 xs t s
g
w

= + -w t( ) ( ) ( )

where x can represent any single component of the velocity
vector (i.e., x ä (U, V, W)) or its magnitude, which we denote
as U V W

2 2 2 2s s s s= + + . The distinguishing characteristics
between Equations (7), (8), and (9) are the assumptions placed
on the diffusion coefficient: namely, that it is constant,
velocity-dependent, or velocity/time-dependent, respectively.
A final remark on Equation (9): Wielen (1977) denote the
diffusion timescale as T, but we use an inverse time ω in order
to avoid confusion with temperature.

Now we shall establish a model velocity dispersion that is
directly comparable to the published measurements. If we
consider a single stellar population of disk brown dwarfs
created at some time in the past, then it will have a present-day
velocity dispersion given by one of the above forms
(Equations (7)–(9)). Similarly, subsequent populations will
have a lower present-day velocity dispersion (as they will be
younger). However, the measured velocity dispersions are not
divided by population age, but are effectively averaged over the
age of the Milky Way disk. Therefore, we average the above
AVRs over the age of the disk age and weight them by the
creation function in order to account for the number of varying
SFH. Finally, the velocity dispersions are reported for a
specified range of spectral type, so we also integrate over the
relevant range of effective temperature that we determine from
the spline fit in Figure 3. We denote this range of effective
temperature as (T0, T1), so the model velocity dispersion is
given by:

T T
T t dt dT

T t dt dT
,
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,
, 10x
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and we recognize that the denominator is the integral over
temperature distribution given by Equation (5).

As a final remark, most authors employ Monte Carlo
simulations to transform the creation function (Equation (1))
into relevant observable distributions (e.g., Burgasser 2004;
Deacon & Hambly 2006; Day-Jones et al. 2013; Ryan et al.
2017). We have verified that our method is consistent with a
Monte Carlo simulation for a model, but is significantly more
efficient, which permits a more thorough exploration of the
uncertainties and degeneracies.

3. Observations

We seek to fit the above model to the observed properties of
brown dwarfs as published in various studies. Below, we
describe the relevant attributes of our adopted data.

3.1. Distribution Functions

We consider three observed distributions: effective temper-
ature, spectral type ( ), and J-band absolute magnitude (MJ).
We use the data from Filippazzo et al. (2015) to establish the
transformations from effective temperature to a given obser-
vable of the form X= X(T). However, we update the parallaxes
(and hence MJ) of two objects (0949−1545 and 1647+ 5632)
with higher-precision data from Best et al. (2020) and
Kirkpatrick et al. (2021). As seen in Figure 3, these observed
relationships depend on the surface gravity (as encoded by the
plot symbol color). When studies of field brown dwarfs have
sufficient data to distinguish low- and high-surface gravity
sources, they find that the samples contain small fractions of
low-gravity or young brown dwarfs. For example, Best et al.
(2021) find that 5.5± 1.2% and 2.6± 1.6% of their sample of
369 brown dwarfs are young (�200 Myr) and subdwarfs,
respectively. Therefore, we tailor our transformations for the
high-surface gravity objects, and we show the cubic-spline fits
(red lines in Figure 3) to these objects. In Section 5, we will
discuss this effect as a systematic difference between our model
(tailored to high-surface gravity brown dwarfs) and the
observations (containing small proportions of low-gravity
objects).

3.2. Kinematic Data

There are many published results for brown dwarf velocity
dispersions, which are often quoted in the UVW-coordinate
system, which is defined such that they increase in the direction
of the Galactic center, Galactic rotation, and Galactic north
pole, respectively. Additionally, to adopt the Wielen (1977)
relations, it is critical to use |W|-weighted velocity dispersions
(Wielen 1974). Therefore, we recompute the velocity disper-
sions with a consistent weighting scheme based on
Equations (1)–(3) of Wielen (1977) for five publications that
present UVW-velocities of individual brown dwarfs (Zapatero
Osorio et al. 2007; Blake et al. 2010; Schmidt et al. 2010;

Figure 3. Transformation functions. The data are taken from Filippazzo et al.
(2015), the surface gravity glog( ) is encoded in the point color as indicated in
the color bar, and the red line represents a cubic-spline fit. We use these splines
when transforming from effective temperature to either of these observable
(spectral type or absolute J-band magnitude). As described in the accompany-
ing text, we tailor these splines to the high-surface gravity objects, as published
samples of field brown dwarfs find very small fractions of low-surface gravity
objects.
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Seifahrt et al. 2010; Burgasser et al. 2015). It is worth
commenting on a few properties of the underlying samples in
these five publications. The authors of each of these previous
works have obtained their own respective radial velocities and
proper motions, with the exceptions of Blake et al. (2010) and
Seifahrt et al. (2010), who employ the same proper motion
catalog. Furthermore, these two samples share 29 brown dwarfs
(approximately half of each sample separately). Therefore, the
bulk of the kinematic data should be considered uncorrelated,
with the exception of a fraction of the Blake et al. (2010) and
Seifahrt et al. (2010) samples. However, we keep the two data
sets in our analysis because they use different radial velocities
and still have a many unique objects.

In Figure 4, we show the |W|-weighted velocity dispersions
normalized to their magnitudes as a function of spectral type.
We see that the average ratios are 0.77 0.08Us sá ñ =  ,

0.51 0.15Vs sá ñ =  , and 0.36 0.083Ws sá ñ =  , which is
comparable to the original findings of Wielen (1977) of 0.77,
0.49, and 0.41 for a vast range of stellar types (see their
Table 1), respectively. Since these ratios are not seen to vary
with age (Wielen 1977), we will use the total velocity
dispersion (σ) as our kinematic observable in order to minimize
the free parameters in the model, though in principle one could
consider each component of the velocity vector separately.

3.3. Data Summary

In Table 1, we list all the data we model, their relevant citations,
the domains over which the measurements are made, and the
numbers of individual measurements. However, there is an obvious
discrepancy in the J-band luminosity functions between Cruz et al.
(2007) and Bardalez Gagliuffi et al. (2019), which has been
previously noted (Kirkpatrick et al. 2021, who refer to a private
communication with Bardalez Gagliuffi that indicates their
measurements are high due to pessimistic completeness correc-
tions). Since the results from Bardalez Gagliuffi et al. (2019) are
derived from considerably more data, we do not want to retain
them in our analysis. Therefore, we derive a multiplicative
correction as the uncertainty-weighted average ratio of the Bardalez

Gagliuffi et al. (2019) to Cruz et al. (2007) luminosity functions,
which we find as r= 1.4± 0.3. In the subsequent analyses, we
renormalize the Bardalez Gagliuffi et al. (2019) results by this
factor and reduce the degrees of freedom by one. With that, we are
left with a total of 77 measurements or bins in a given observable,
which were derived from many hundreds to thousands of
individual brown dwarfs.

4. MCMC Marginalization

Our primary goal is to identify to what extent a single, self-
consistent model for the brown dwarf creation function and
diffusion law can simultaneously reproduce the observed
distribution functions and kinematics. While simple “greedy”
algorithms may quickly identify the optimal solution, they
generally cannot produce contours for assessing degeneracies
in the parameter space. Therefore, we embed our model within
a Markov Chain Monte Carlo (MCMC) simulation to draw

Table 1
Observed Data

Observation Reference Domain Numbera Counta

spectral type Best et al. (2021) L0 T8.5  19 369
Burningham et al. (2013) T6 Y0  4 76
Day-Jones et al. (2013) L4 T4.5  3 63
Warren et al. (2021) M9 L3  4 33958

effective temperature Kirkpatrick et al. (2021) 450 � T � 2100 11 525
J-band absolute magnitude Bardalez Gagliuffi et al. (2019) b 10.5 � MJ � 14 6 410

Cruz et al. (2007) 10.5 � MJ � 14 7 198
Reylé et al. (2010) 14 � MJ � 17 6 102

velocity dispersions Blake et al. (2010) M9 L6  2 59
Burgasser et al. (2015) M6 L6  2 85
Schmidt et al. (2010) L0 L5  3 484
Seifahrt et al. (2010) L0 L8  2 43
Zapatero Osorio et al. (2007) M6.5 T8  1 21

totals 70 36393

Notes.
a Here, “number” and “count” refer to the number of data points we model and the total number of brown dwarfs in the parent publication, respectively.
b As described in Section 3.3, the Bardalez Gagliuffi et al. (2019) are scaled by 1.4 in order to be consistent with the Cruz et al. (2007) results, and as such the number
of observations is reduced by one.

Figure 4. Published |W|-weighted velocity dispersions. The symbol colors are
described in the above legend, and the dashed line and gray bar indicate the
uncertainty-weighted average of each ratio and one standard deviation range.
Only the vertical component σW/σ shows any evidence for a strong type
dependence, which was predicted by Ryan et al. (2017).
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random deviates from the posterior distribution, which is given
by Bayes’ theorem:

p p , 11q q qµ( ∣ ) ( ) ( ∣ ) ( )  

where θ is a vector of the unknown parameters of the model
(discussed in more detail below),  is the vector of measured
data (as described above), p(θ) is the prior probability of this
model vector, and q( ∣ )  is the likelihood of getting the data
vector given the model. Given the quoted uncertainties of the
data, we take the likelihood as a Gaussian, 2 ln 2c- = , and
χ2 has the usual definition. We adopt simple top-hat priors in
either linear or logarithmic space as stated in Table 2. We use
the emcee implementation (Foreman-Mackey et al. 2013) of
the affine-invariant sampler (Goodman & Weare 2010) for all
MCMC simulations.

In the following subsections, we will fit various subsets of the
observed data (i.e., the distributions in spectral type, effective
temperature, and absolute J-band magnitude as well as total

velocity dispersion). We treat each observable equally and do not
apply any relative weighting when computing the posterior.
Therefore, the posterior used in the MCMC simulation(s) is the
simple product of the posteriors derived for each distribution

Figure 5. Corner plot for simultaneous fitting of observed distributions. The dotted lines in the marginal distributions indicate the 68.3% confidence range around their
respective peaks.

Table 2
Model Parameters

Name Units Range

IMF normalization log #/pc3 4 log 0f-  *
IMF power-law index L −2 � α � 0
SFH power-law index L 0 � β � 8
SFH e-folding timescale log Gyr t1 log 3-  *
initial velocity dispersion km s−1 0 � σ0
constant diffusion coefficient (km s)−2/Gyr 0 � C
velocity-dependent diffusion coefficient (km s)−3/Gyr 0 � γ

velocity-dependent e-folding timescale log Gyr−1 2 log 2w-  
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separately. Ultimately, this culminates in simultaneously fitting all
of the observations with a single model.

4.1. Distribution Functions

MCMC methods are known to have difficulties converging
in high-dimensional parameter spaces. Therefore, we begin by
only considering the observed distributions, and seed the chains
with the solution from a bounded optimization with the
Levenburg–Marquardt method (Newville et al. 2014, hereafter
referred to as LM results) in order to expedite convergence of
the chains. For all MCMC simulations, we use 20 walkers,
burn 1000 steps, draw 3000 samples from the posterior, and
thin the chains by a factor of 10:1, which results in 6000
random deviates. In Figure 5, we show the kernel-density
estimation of the posterior for the observed distributions
described in Section 3.1. We record the peak positions of the
marginalized posterior distributions and their 68.3% upper and
lower confidence intervals in Table 3. We find two notable
results from this preparatory simulation: the power-law index
(β) of the SFH is largely unconstrained, and the power-law
index of the IMF is well-localized, α=−0.71± 0.11. In
Figure 6, we show the fit of our model to the observed
distributions.

4.2. Kinematic Data

Next, we expand the parameter space to include the total
velocity dispersions, but start these MCMC simulations on the
peaks of the marginal distributions from the observed-
distribution-only analysis (see Figure 5). We consider each of
the AVR models (Equations (7), (8), and (9)) in turn, and
present their best-fit model parameters in Table 3. To
distinguish between the different model AVRs, each with their
own degrees of freedom, we consider the Bayesian information
criterion (BIC) associated with the goodness of fit and degrees
of freedom: k Nln 2 ln= - BIC , where k and N represent
the number of parameters and the number of measurements in
the model, respectively. We find that the constant-diffusion
model (see Figure 7) has the lowest BIC of the kinematic
models, and so it becomes the prime focus of our interpreta-
tions. However, in all cases, we find that the constraints on the
power-law index of the SFH become much tighter with β 4,
which is formally consistent at the 1σ level with an
exponentially declining model. For this family of declining
SFHs, we find the exponential timescale is t*∼ 1 Gyr; however
we remain cautious of overinterpreting this result, given the
sizeable uncertainties on the SFH. Similarly, the initial velocity
dispersion shows a sizeable uncertainty, which is a direct
consequence of the inconsistencies in published velocity

dispersions (see upper right panel of Figure 8). Nevertheless,
the kinematic data have a clear role to play in further refining
the model.
We assessed the convergence for every parameter of every

MCMC simulation by considering the autocorrelation time-
scale for the parameter. We find that the autocorrelation
function tends to a constant after ∼200 steps, but this quick
convergence is not surprising given that each chain was started
at the maximum of the posterior identified by the LM-fit.
Furthermore, in all cases, the MCMC procedure does not find
that the position of the peak in the posterior is considerably
different than that determined by the LM-fit. To restate the
above, the MCMC simulations are important for assessing
degeneracies in the model, which improves our overall
understanding of the uncertainties on the individual parameters.
Based on these arguments, we believe that the MCMC chains
have converged and robust conclusions based on our quoted
uncertainties can be made.

Table 3
Best-Fit Model Parametersa

Description logf* α β tlog * σ0 C γ logw χ2/νb BIC

photometric distributions 2.22 0.09
0.09- -

+ 0.71 0.11
0.11- -

+ 7.34 2.87
2.66

-
+ 0.12 0.34

0.28- -
+ L L L L 258/63 274

constant diffusion 2.23 0.13
0.13- -

+ 0.72 0.14
0.13- -

+ 2.56 2.56
2.93

-
+ 0.17 0.59

0.52
-
+ 9.01 9.01

12.16
-
+ 671 217

224
-
+ L L 371/71 397

velocity-dependent 2.21 0.09
0.09- -

+ 0.74 0.11
0.11- -

+ 3.12 3.12
2.63

-
+ 0.00 0.47

0.32- -
+ 11.2 11.2

11.1
-
+ L 2.36 0.59

0.57
-
+ L 407/71 433

velocity/time-dependent 2.21 0.09
0.09- -

+ 0.75 0.10
0.11- -

+ 2.51 2.51
2.08

-
+ 0.20 0.44

0.38
-
+ 6.56 6.56

7.32
-
+ L 0.15 0.15

0.27
-
+ 0.04 0.24

0.26- -
+ 1389/70 1419

Notes.
a The units of each parameter are given in Table 2.
b The χ2 values and the degrees of freedom for the peak in the marginalized posteriors.

Figure 6. Best-fit model to observed distributions. The blue line represents the
model for the peak in the marginalized posteriors from the MCMC fit (see
Figure 5) for θ = −2.25, −0.67, 7.64, −0.14) (see Table 3). The light gray
region indicates the 1σ uncertainty derived from the covariance from the
MCMC chains. The legend in the upper margin details the authorship of the
data points by color.
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5. Discussion

The observed distributions alone are capable of placing tight
constraints on the power-law index of the IMF of α=−0.71±
0.11, which has been examined before. For example, our
approach is very similar to the Bayesian model developed by
Allen et al. (2005) to examine the J-band luminosity functions
from Burgasser (2002), Cruz et al. (2007). Although they
considered a larger suite of IMF forms, including a two-
component power law and a truncated power law, we find
considerably tighter constraints on the power-law index (for a
single-component power law): −0.3± 0.6 versus −0.67± 0.11.
Additionally, Kirkpatrick et al. (2021) analyze their observed
temperature distribution from 525 brown dwarfs, and find a
power-law index of α=−0.6± 0.1. Our improvement with
respect to these previous studies is almost certainly related to the
substantially larger data set that we have explored8 or a more

robust statistical treatment of the uncertainties (Kirkpatrick
et al. 2021 consider only a coarse sampling in α and identify
the range where their χ2 values show no significant difference).
Here, we consider the sources of systematic uncertainty that

we have tacitly ignored, the foremost of which concerns the
aggregation of published results. This is most evident in our
estimated rescaling of a factor of 1.4 for the Bardalez Gagliuffi
et al. (2019) based on the reported pessimistic completeness
corrections (Kirkpatrick et al. 2021, described in Table 1).
Second, we have explicitly focused on brown dwarfs by
calibrating the transformations to observables around sources
with high-surface gravity glog 5 , as most published results
contain few low-gravity objects. But this discrepancy between
the observations with few low-gravity objects and our
simulations calibrated to only high-gravity objects may explain
some differences in our findings. The largest deviations
between our derived cubic splines (red lines in Figure 3) occur
for MJ 12 mag or T 1800 K. In general, these portions of
our model space (Figure 6 or Figure 8) do not show any

Figure 7. Corner plot for simultaneous fit of observed distributions and total velocity dispersions with a constant diffusion term: Equation (7). The plot symbols have
the same meaning as in Figure 5.

8 The data analyzed by Allen et al. (2005) and Kirkpatrick et al. (2021) are
included in our study.
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significant differences between the data and the model. In fact,
the regions of the largest differences occur at 1000 T 1400
K, where the spline fits seem representative of the underlying
population. A final systematic comes from uncertainties in the
calibration data of Filippazzo et al. (2015), where there is a
clear scatter around the cubic splines (the red line in Figure 3).
Based on the rms of the residuals to those interpolants, we
estimate that the systematic errors are σJ∼ 0.4 mag and

1.5s ~ . In Appendix D, we give a rough estimate of the
consequences these systematic terms have for our derived
parameters, and we leave the full propagation of these
uncertainties to future work.

There are several noteworthy portions of parameter space
where our model fails to accurately reproduce the observed
data, and they seem to be related to the L/T transition, which
may implicate the evolutionary models. First, our model
predicts a factor of ∼10 too few brown dwarfs at T∼ 1300 K,
compared to the findings of Kirkpatrick et al. (2021, see middle
panels of Figures 6 and 8). Second, there appears to be a
discontinuity in the observed J-band luminosity function
around J≈ 14 mag that is not completely reflected in the
model (see lower panel in Figures 6 and 8). But, as a general
rule, our model tends to underpredict the observations, which
may not be surprising, since the infrared color–magnitude
diagram for field brown dwarfs shows a flattening around
MKO J∼ 14 mag (e.g., Dupuy & Liu 2012), and theoretical
isochrones often struggle to reproduce this sharp feature (for
example, see Figure 11 of Phillips et al. 2020). However, we
note that the discontinuity in the J-band luminosity function
conspicuously occurs between three data sets (Cruz et al. 2007
and Bardalez Gagliuffi et al. 2019 with Reylé et al. 2010),
which may hint at some systematic in the observations (such as
subtle differences in the magnitude system or otherwise
unaddressed completeness corrections). Finally, we note that
there is considerable disagreement in the kinematic data,

whether compared to our model or other published results.
These differences are likely a property of the observations and
not our model, as the kinematic samples are rarely unbiased
and/or complete.
We find that the constant-diffusion AVR model best reproduces

the observed distribution and kinematic data with ΔBIC 10
(compared to other AVR relations), with brown dwarfs requiring
an initial velocity dispersion of 9.00 9.0

11s ~ -
+ km s−1. Luhman

(2012) reviews several formation scenarios for brown dwarfs,
specifically highlighting the contrasting predictions for the initial
velocity dispersion. To establish a baseline for comparison, we
determine the initial (total) velocity dispersion from the kinematic
data from LAMOST-Gaia (Yu & Liu 2018). Since the brown
dwarfs are almost certainly associated with the thin disk, we only
consider the chemically defined thin disk from Yu & Liu (2018)
(i.e., |z|< 270 pc and τ� 7 Gyr). We fit Equation (7) for the
constant-diffusion AVR model to their total velocity dispersions
for all stars of all metallicities, and find σ0,MS= 13.4± 3.4 km s−1

and CMS= 390± 25 (km s)−2/Gyr, which suggests that brown
dwarfs are likely formed with initial velocity dispersions
comparable to those of main-sequence stars. However, we remain
cautious of overinterpreting these results, given the considerable
uncertainty on our inferred initial velocity dispersions for brown
dwarfs, which is likely related to the inherent difficulties in
obtaining complete and unbiased kinematic measurements.
Instead, we reflect on these results as highlighting the degree to
which a single model single model can (or cannot) reproduce a
range of observations, whether distribution functions or kine-
matics. Future studies of disk brown dwarfs will be able to build
on this approach and extend similar findings on young stellar
systems (e.g., White & Basri 2003; Joergens 2006; Luhman et al.
2006; Parker et al. 2011) to the Galactic scale.
While the importance of kinematic data cannot be overstated,

these measurements are challenging to obtain free of sample
biases (for example, see Hsu et al. 2021, for an illustration of
the difficulties). Therefore, Ryan et al. (2017) suggest using
star counts to estimate the thickness of the thin disk (zscl) that
can be linked to the vertical velocity dispersion (σW) for a self-
gravitating disk: Gz4W scl

2s pµ , where the constant of
proportionality is of order unity and is based on the disk shape
parameter n (van der Kruit 1988). In this way, if wide-field
surveys can provide robust spectral types from high-fidelity
photometry to distinguish brown dwarfs from other astronom-
ical sources, then they can probe a similar Galactic-scale
physics with different biases or sample completeness. To this
end, the large surveys with the Nancy Grace Roman Space
Telescope (near-infrared imaging and slitless spectroscopy),
Euclid (near-infrared imaging and slitless spectroscopy), and/
or the Rubin Observatory (optical imaging) may be able to
catalog brown dwarfs 1 kpc (depending on spectral type).

6. Conclusions

We find a power-law IMF and a constant-diffusion AVR
with an initial velocity dispersion of 9.00 9.0

11s ~ -
+ km s−1,

which is perhaps smaller or comparable to that of main-
sequence stars (of 13.4± 3.4 km s−1; see Yu & Liu 2018).
Taken together, these results suggest that brown dwarfs and
main-sequence stars form via very similar processes, and the
Reipurth & Clarke (2001) model with enhanced velocity
dispersions for brown dwarfs is generally supported. Future
work may utilize large-area surveys to map the thickness of the

Figure 8. Best-fit model to the combined observed distributions and kinematic
data. The plot symbols have the same meaning as in Figure 6, but the model
here represents the constant AVR from Equation (7) with θ = (−2.23, −0.72,
2.06, 0.33, 8.60, 651).
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thin disk of the Milky Way, which probes similar physics as the
kinematics, but subject to different selection biases.

We would like to thank S. Schmidt and J. Lunine for helpful
discussions and advice. We are extremely grateful to the
anonymous referee for a careful and thorough reading and
critique of this paper.

Software: emcee (Foreman-Mackey et al. 2013), lmfit
(Newville et al. 2014).

Appendix A
A Log-normal IMF

Above, we exclusively considered a single-component
power-law IMF. Here, we briefly describe the results for a
log-normal IMF of the form:

m dm
m s

m m

s
dm

ln 2
exp

1

2

ln ln

ln
.

A1

2

f
f

p
= -

-⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

* *( )

( )

This model has three parameters: m s,ln ,lnf* *( ), therefore we
use the ΔBIC to distinguish between the two functional forms.
We find that, for all of the AVR models, the D =BIC

800log normal power law-- - BIC BIC , which strongly disfavors
the log-normal model.

Appendix B
The Effect of the Assumed the Milky Way Disk Age

We do not attempt to marginalize over the age of the Milky
Way disk, as there are far better data sets to establish this
parameter. However, we considered two alternate values,
τMW= 8 Gyr and 12 Gyr, to estimate the sensitivity of our
adopted value (10 Gyr) on the results. If we briefly consider the
observed distribution functions and the LM results, then we
find only a marginal change in our observed parameters (i.e.,
the first row of Table 3). For example, the changes in the
goodness of fit with respect to the τMW= 10 Gyr assumption
are Δχ2=− 0.03 and+ 0.92, respectively. While this is far
from a thorough statistical exploration, it does not indicate a
strong dependence on the assumed disk age.

Appendix C
Consideration of Alternative Evolutionary Models

In the main body of this work, we focused on the Burrows
et al. (1997) models because they provide a dense and broad
sampling of points in the mass–age plane and extend to modest
temperatures. In this way, we can probe the largest range of the
observed distribution functions. However, here we consider
five additional evolutionary models (Burrows et al. 2001;
Baraffe et al. 2003; Saumon & Marley 2008; Marley &
Saumon 2020; Phillips et al. 2020). While there is broad
qualitative agreement in the general characteristics of the
cooling model T(τ, m), the subtle differences may lead to
unexpected changes. For simplicity, we only consider the
distribution functions (i.e., we ignore kinematics) and work
with the LM results (i.e., we skip the MCMC simulations, as
their primary role is to characterize the multivariate uncertainty
distribution). We restrict our ranges to the temperature, mass,
and age regions where all models have dense sampling, and we
find largely consistent results:− 1.0 α− 0.7, with higher
uncertainties δα∼ 0.2. As noted in the text, this increase in

uncertainty is likely due to reducing the number of observed
data points.

Appendix D
On the Role of Uncertainty in the Transformation

Functions

As described above, the scatter around the spline models to
the transformation functions in Figure 3 will introduce a
systematic uncertainty on our derived model parameters. Here,
we provide a rough estimate of those uncertainties, and defer to
future work a more complete treatment that marginalizes over
the spline-model parameters by including that step in the
MCMC simulation(s). As noted, the respective standard
deviations of the residuals around the spline model are
σJ∼ 0.4 mag and 1.5s ~ . We add normal random variables
with zero mean and these standard deviations to the
observations in the lower and upper panels of Figure 6,
respectively. We repeat the LM-fitting procedure and repeat for
103 to establish a distribution of output parameters. Based on
these Monte Carlo simulations, we find the typical uncertainty
on the derived model parameters to be σθ∼ (0.3, 0.3, 0.0, 0.4),
where tlog , , , logq f a b= * *( ).
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