640 research outputs found
Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA)
Solid-state voltammetric (micro)electrodes have been used in a variety of environments to study biogeochemical processes. Here we show the wealth of information that has been obtained in the study of sediments, microbial mats, cultures and the water column including hydrothermal vents. Voltammetric analyzers have been developed to function with operator guidance and in unattended mode for temporal studies with an in situ electrochemical analyzer (ISEA). The electrodes can detect the presence (or absence) of a host of redox species and trace metals simultaneously. The multi-species capacity of the voltammetric electrode can be used to examine complex heterogeneous environments such as the root zone of salt marsh sediments. The data obtained with these systems clearly show that O2 and Mn2+ profiles in marine sedimentary porewaters and in microbial biofilms on metal surfaces rarely overlap indicating that O2 is not a direct oxidant for Mn2+. This lack of overlap was suggested originally by Joris Gieskes\u27 group. In waters emanating from hydrothermal vents, Fe2+, H2S and soluble molecular FeS clusters (FeSaq) are detected indicating that the reactants for the pyrite formation reaction are H2S and soluble molecular FeS clusters. Using the ISEA with electrodes at fixed positions, data collected continuously over three days near a Riftia pachyptila tubeworm field generally show that O2 and H2S anti-correlate and that H2S and temperature generally correlate. Unlike sedimentary environments, the data clearly show that Riftia live in areas where both O2 and H2S co-exist so that its endosymbiont bacteria can perform chemosynthesis. However, physical mixing of diffuse flow vent waters with oceanic bottom waters above or to the side of the tubeworm field can dampen these correlations or even reverse them. Voltammetry is a powerful technique because it provides chemical speciation data (e.g.; oxidation state and different elemental compounds/ions) as well as quantitative data. Because (micro)organisms occupy environmental niches due to the system\u27s chemistry, it is necessary to know chemical speciation. Voltammetric methods allow us to study how chemistry drives biology and how biology can affect chemistry for its own benefit
Influence of buoyancy and vertical distribution of sardine Sardinops sagax eggs and larvae on their transport in the northern Benguela ecosystem
In recent years, sardine Sardinops sagax spawning has been recorded inshore off central Namibia. Field observations on eggs and laboratory measurements show that spawning, demonstrated by the distribution of newly spawned eggs, takes place just below the upper mixed layer. The high positive buoyancy of the eggs causes them to ascend rapidly to the surface layer, where they are moved offshore by upwelling-induced offshore transport. However, increased wind-induced mixing also influences the vertical distribution of eggs, causing them to be partly mixed down below the layer moving offshore and into the layer moving inshore. This mechanism acts to retard the transport and offshore loss of eggs from the spawning areas. The vertical distribution of sardine larvae, with highest concentrations deeper than 20 m, indicates active movement out of the layer moving offshore, and this tendency seems to be more pronounced for older larvae. Hence, vertical migration of larvae is an additional factor mitigating their loss from nearshore. Taken together, these features seem to minimize the offshore loss of offspring, particularly in periods of low stock biomass when spawning close to the shore seems to be common.Keywords: buoyancy, northern Benguela, sardine, vertical distributionAfrican Journal of Marine Science 2001, 23: 85–9
Estimating the costs for the treatment of abortion complications in two public referral hospitals: a cross-sectional study in Ouagadougou, Burkina Faso
Treatment costs of induced abortion complications can consume a substantial amount of hospital resources. This use of hospitals scarce resources to treat induced abortion complications may affect hospitals’ capacities to deliver other health care services. In spite of the importance of studying the burden of the treatment of induced abortion complications, few studies have been conducted to document the costs of treating abortion complications in Burkina Faso. Our objective was to estimate the costs of six abortion complications including incomplete abortion, hemorrhage, shock, infection/sepsis, cervix or vagina laceration, and uterus perforation treated in two public referral hospital facilities in Ouagadougou and the cost saving of providing safe abortion care services
Interaction between Cape hake spawning and the circulation in the northern Benguela upwelling ecosystem
Cape hake in Namibian waters are demersal and mesopelagic spawners, spawning peaking offshore between 100 and 400 m deep, depending on local environmental conditions. The cross-shelf circulation, low-oxygen layers and mesoscale gyres are three important environmental factors influencing hake spawning behaviour and subsequent transport of the spawning products. Normally, hake spawn offshore near the bottom at depths of
150–400 m. However, during one cruise, spawning was concentrated below several subsurface mesoscale gyres, resulting in reduced dispersion of the eggs and larvae. When the low-oxygen layer above the bottom is pronounced, hake spawning has been observed close to the top of the layer at oxygen concentrations as low as 0.2–0.3 ml l-1. The relatively small size of the eggs and their high specific gravity make them ascend quite slowly from the spawning depths, 10–40 m per day. Consequently, hake eggs spawned deeper than 200 m hatch before they reach the upper mixed layer. The newly hatched larvae are relatively undeveloped, without functional eyes or mouth, and display little swimming activity during their first hours, but laboratory observations have revealed subsequent periods of downward swimming activity. Based on current field observations, on buoyancy measurements of eggs and larvae and on observed larval behaviour, it is concluded that hake eggs and larvae are transported onshore by features of the upwelling subsurface circulation that compensate for offshore movement of surface water. This may be the basic mechanism concentrating early juvenile hake nearshore. Spawning activity near the low-oxygen layer might be a behavioural adaptation to minimize egg predation, because few other species are expected to survive such low concentrations of oxygen.Keywords: buoyancy, eggs, larvae, recruitment processes, retention, vertical distributionAfrican Journal of Marine Science 2001, 23: 317–33
Genetic research: the role of citizens, public health and international stakeholders
Background: Genetic research has become an indispensable instrument for medical research, and the subjects involved have both divergent and convergent interests. Objective: The possibility of having more detailed genetic information undoubtedly offers benefits for the health of the subject, but could also pose risks and make the subject vulnerable to discrimination. Methods: The scientific community has viewed very favorably the public health utility of family history, in which data from a family whose members suffer from chronic pathologies is collected and filed, in order to develop a sort of “stratification of family risk.” Even though in the last decade the scientific and juridical literature has contributed greatly to the topic of biobanks, the perplexities that continue to surround this theme give the idea that current ethical protocols on research are inadequate. Results: Researchers, citizens, International stakeholders, mass media, Public Health and Governments play a key role in genetic research. It is obvious that the methods used for genetic research do not present intrinsic risks; they are much less dangerous than other activities of diagnosis and research. Before authorizing a research project, it is important to reflect on the responsibility and transparency of the studies to be conducted, and on the impact they may have on the interests of public health. Conclusion: We believe that the highest priority need is to develop a common language on the theme, as is the case in the sphere of clinical experimentation where rules of good clinical practice, albeit at times conflicting, have led to uniform convergences in the scientific world on the points to be actuated
Spawning of bluefin tuna in the black sea: historical evidence, environmental constraints and population plasticity
<div><p>The lucrative and highly migratory Atlantic bluefin tuna, <em>Thunnus thynnus</em> (Linnaeus 1758<em>;</em> Scombridae), used to be distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the 1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate, we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and foraging.</p> </div
- …
