3,031 research outputs found
Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion
This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding ice-sheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~800m. Use of multiple cosmogenic isotopes on bedrock and erratics (26Al, 10Be, 21Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback that can change ice-sheet thickness, extent, and direction of flow. Indeed, as the subglacial troughs evolve over millions of years, they increase topographic relief; and this changes the dynamics of the ice sheet. © 2013 Elsevier B.V
Probing the interfacial and sub-surface structure of Si/Si1 – xGex multilayers
The ability to determine structural and compositional information from the sub-surface region of a semiconductor material has been demonstrated using a new time-of-flight medium energy ion scattering spectroscopy (ToF-MEISS) system. A series of silicon–silicon/germanium (Si/Si1 – xGex) heterostructure and multilayer samples, grown using both solid source molecular beam epitaxy (MBE) and gas source chemical vapor deposition (CVD) on Si(100) substrates, have been investigated. These data indicate that each individual layer of Si1 – xGex (x ~ 0.22) in both two- and three-period samples, can be uniquely identified with a resolution of approximately 3 nm. A comparison of MBE and CVD grown samples has also been made using layers with similar structures and composition. The total Ge content of each sample was confirmed using conventional Rutherford backscattering spectrometry
A dynamically extending exclusion process
An extension of the totally asymmetric exclusion process, which incorporates
a dynamically extending lattice is explored. Although originally inspired as a
model for filamentous fungal growth, here the dynamically extending exclusion
process (DEEP) is studied in its own right, as a nontrivial addition to the
class of nonequilibrium exclusion process models. Here we discuss various
mean-field approximation schemes and elucidate the steady state behaviour of
the model and its associated phase diagram. Of particular note is that the
dynamics of the extending lattice leads to a new region in the phase diagram in
which a shock discontinuity in the density travels forward with a velocity that
is lower than the velocity of the tip of the lattice. Thus in this region the
shock recedes from both boundaries.Comment: 20 pages, 12 figure
Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry
In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across an moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2mm compared to control distributions derived from dry sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological
process interpretation and analysis
‘I don't think I can catch it’: women, confidence and responsibility in football coach education
Whilst women’s participation in sport continues to increase, their presence remains ideologically challenging given the significance of sport for the construction of gendered identities. As a hegmonically masculine institution, leadership roles across sport remain male-dominated and the entry of women into positions of authority (such as coaching) routinely contested. But in powerful male-typed sports, like football, women’s participation remains particularly challenging. Consequently, constructions of gender inequity in coaching were explored at a regional division of the English Football Association through unstructured interviews and coaching course observation. Using critical discourse
analysis we identified the consistent re/production of women as unconfident in their own skills and abilities, and the framing of women themselves as responsible for the gendered inequities in football coaching. Women were thereby
strategically positioned as deservedly on the periphery of the football category,whilst the organization was positioned as progressive and liberal
Proprietary Reasons and Joint Action
Some of the reasons one acts on in joint action are shared with fellow participants. But others are proprietary: reasons of one’s own that have no direct practical significance for other participants. The compatibility of joint action with proprietary reasons serves to distinguish the former from other forms of collective agency; moreover, it is arguably a desirable feature of joint action. Advocates of “team reasoning” link the special collective intention individual participants have when acting together with a distinctive form of practical reasoning that purports to put individuals in touch with group or collective reasons. Such views entail the surprising conclusion that one cannot engage in joint action for proprietary reasons. Suppose we understand the contrast between minimal and robust forms of joint action in terms of the extent to which participants act on proprietary reasons as opposed to shared reasons. Then, if the team reasoning view of joint intention and action is correct, it makes no sense to talk of minimal joint action. As soon as the reason for which one participates is proprietary, then one is not, on this view, genuinely engaged in joint action
Phase diagram of two-lane driven diffusive systems
We consider a large class of two-lane driven diffusive systems in contact
with reservoirs at their boundaries and develop a stability analysis as a
method to derive the phase diagrams of such systems. We illustrate the method
by deriving phase diagrams for the asymmetric exclusion process coupled to
various second lanes: a diffusive lane; an asymmetric exclusion process with
advection in the same direction as the first lane, and an asymmetric exclusion
process with advection in the opposite direction. The competing currents on the
two lanes naturally lead to a very rich phenomenology and we find a variety of
phase diagrams. It is shown that the stability analysis is equivalent to an
`extremal current principle' for the total current in the two lanes. We also
point to classes of models where both the stability analysis and the extremal
current principle fail
Master crossover behavior of parachor correlations for one-component fluids
The master asymptotic behavior of the usual parachor correlations, expressing
surface tension as a power law of the density difference
between coexisting liquid and vapor, is analyzed for a
series of pure compounds close to their liquid-vapor critical point, using only
four critical parameters , , and ,
for each fluid.
... The main consequences of these theoretical estimations are discussed in
the light of engineering applications and process simulations where parachor
correlations constitute one of the most practical method for estimating surface
tension from density and capillary rise measurements
The role of epistemic communities: local think tanks, international practitioners and security sector reform in Kosovo
- …
