243 research outputs found
Metal-Insulator Transitions in Degenerate Hubbard Models and AC
Mott-Hubbard metal-insulator transitions in -fold degenerate Hubbard
models are studied within the Gutzwiller approximation. For any rational
filling with (integer) electrons per site it is found that metal-insulator
transition occurs at a critical correlation energy
, where
is the band energy per particle for the uncorrelated Fermi-liquid state and
is a geometric factor which increases linearly with . We
propose that the alkali metal doped fullerides can be described by
a 3-fold degenerate Hubbard model. Using the current estimate of band width and
correlation energy this implies that most of , at integer ,
are Mott-Hubbard insulators and is a strongly correlated
metal.Comment: 10 pages, Revte
Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60
We present an NMR study of Na2C60 and K4C60, two compounds that are related
by electron-hole symmetry in the C60 triply degenerate conduction band. In both
systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements
detect a gap in the electronic structure, most likely related to
singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or
C60^{4-}. However, the extended temperature range of the measurements presented
here (10 K to 700 K) allows to reveal deviations with respect to this general
trend, both at high and low temperatures. Above room temperature, 1/T1 deviates
from the activated law that one would expect from the presence of the gap and
saturates. In the same temperature range, a lowering of symmetry is detected in
Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60,
modifications of the 13C spectra lineshapes also indicate a structural
modification. We discuss this high temperature deviation in terms of a coupling
between JTD and local symmetry. At low temperatures, 1/TT tends to a
constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual
metallic character, which emphasizes the proximity of metallic and insulting
behaviors in alkali fullerides.Comment: 12 pages, 13 figure
Structure and properties of a novel fulleride Sm6C60
A novel fulleride Sm6C60 has been synthesized using high temperature solid
state reaction. The Rietveld refinement on high resolution synchrotron X-ray
powder diffraction data shows that Sm6C60 is isostructural with body-centered
cubic A6C60 (A=K, Ba). Raman spectrum of Sm6C60 is similar to that of Ba6C60,
and the frequencies of two Ag modes in Sm6C60 are nearly the same as that of
Ba6C60, suggesting that Sm is divalent and hybridization between C60 molecules
and the Sm atom could exist in Sm6C60. Resistivity measurement shows a weak
T-linear behavior above 180 K, the transport at low temperature is mainly
dominated by granular-metal theory.Comment: 9 pages, 3 figures, submitted to Phys. Rev. B (March 12, 1999
Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening
To expand the available set of Baeyer–Villiger monooxygenases (BVMOs), we have created expression constructs for producing 22 Type I BVMOs that are present in the genome of Rhodococcus jostii RHA1. Each BVMO has been probed with a large panel of potential substrates. Except for testing their substrate acceptance, also the enantioselectivity of some selected BVMOs was studied. The results provide insight into the biocatalytic potential of this collection of BVMOs and expand the biocatalytic repertoire known for BVMOs. This study also sheds light on the catalytic capacity of this large set of BVMOs that is present in this specific actinomycete. Furthermore, a comparative sequence analysis revealed a new BVMO-typifying sequence motif. This motif represents a useful tool for effective future genome mining efforts.
A single gene defect causing claustrophobia
Claustrophobia, the well-known fear of being trapped in narrow/closed spaces, is often considered a conditioned response to traumatic experience. Surprisingly, we found that mutations affecting a single gene, encoding a stress-regulated neuronal protein, can cause claustrophobia. Gpm6a-deficient mice develop normally and lack obvious behavioral abnormalities. However, when mildly stressed by single-housing, these mice develop a striking claustrophobia-like phenotype, which is not inducible in wild-type controls, even by severe stress. The human GPM6A gene is located on chromosome 4q32-q34, a region linked to panic disorder. Sequence analysis of 115 claustrophobic and non-claustrophobic subjects identified nine variants in the noncoding region of the gene that are more frequent in affected individuals (P=0.028). One variant in the 3′untranslated region was linked to claustrophobia in two small pedigrees. This mutant mRNA is functional but cannot be silenced by neuronal miR124 derived itself from a stress-regulated transcript. We suggest that loosing dynamic regulation of neuronal GPM6A expression poses a genetic risk for claustrophobia
Kulturkammervorrichtung zur Erzeugung von flusslosen und zeitstabilen Gradienten
Kulturkammervorrichtung zur Erzeugung von flusslosen und zeitstabilen Gradienten (1), umfassend eine Beobachtungskammer (2), in der ein Konzentrationsgefüge dreidimensional einstellbar ist, mehrere Versorgungskanäle (4) zur Durchströmung mit einem Versorgungsfluid (10), jeweils eine Trennwand (13) zwischen den Versorgungskanälen (4) und der Beobachtungskammer (2), wobei die Trennwand (13) Poren (5) zur Diffusion von Versorgungsfluid zwischen dem jeweiligen Versorgungskanal (4) und der Beobachtungskammer (2) aufweist, wobei eine erste Anordnung von Versorgungskanälen (4O) oberhalb der Beobachtungskammer (2) und eine zweite Anordnung von Versorgungskanälen (4U) unterhalb der Beobachtungskammer (2) angeordnet sind
Genetic markers of Munc13 protein family member, BAIAP3, are gender-specifically associated with anxiety and benzodiazepine abuse in mouse and man
Anxiety disorders and substance abuse, including benzodiazepine use disorder, frequently occur together. Unfortunately, treatment of anxiety disorders still includes benzodiazepines, and patients with an existing comorbid benzodiazepine use disorder or a genetic susceptibility for benzodiazepine use disorder may be at risk of adverse treatment outcomes. The identification of genetic predictors for anxiety disorders, and especially for benzodiazepine use disorder, could aid the selection of the best treatment option and improve clinical outcomes. The brain-specific angiogenesis inhibitor I–associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) protein family of synaptic regulators of neurotransmitter exocytosis, with a striking expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 in mice leads to enhanced seizure propensity and increased anxiety, with the latter being more pronounced in female than in male animals. We hypothesized that genetic variation in human BAIAP3 may also be associated with anxiety. By using a phenotype-based genetic association study, we identified two human BAIAP3 single-nucleotide polymorphism risk genotypes (AA for rs2235632, TT for rs1132358) that show a significant association with anxiety in women and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we found that male, but not female, Baiap3 knockout (KO) mice develop tolerance to diazepam more quickly than control animals. Analysis of cultured Baiap3 KO hypothalamus slices revealed an increase in basal network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is gender specifically associated with anxiety and benzodiazepine use disorder, and the analysis of Baiap3/BAIAP3-related functions may help elucidate mechanisms underlying the development of both disorders
Emerging roles of ATF2 and the dynamic AP1 network in cancer
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.Fil: Lopez Bergami, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Lau, Eric . Burnham Institute for Medical Research; Estados UnidosFil: Ronai, Zeev . Burnham Institute for Medical Research; Estados Unido
A Universal Approach to Eliminate Antigenic Properties of Alpha-Gliadin Peptides in Celiac Disease
Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients
HSPVdb—the Human Short Peptide Variation Database for improved mass spectrometry-based detection of polymorphic HLA-ligands
T cell epitopes derived from polymorphic proteins or from proteins encoded by alternative reading frames (ARFs) play an important role in (tumor) immunology. Identification of these peptides is successfully performed with mass spectrometry. In a mass spectrometry-based approach, the recorded tandem mass spectra are matched against hypothetical spectra generated from known protein sequence databases. Commonly used protein databases contain a minimal level of redundancy, and thus, are not suitable data sources for searching polymorphic T cell epitopes, either in normal or ARFs. At the same time, however, these databases contain much non-polymorphic sequence information, thereby complicating the matching of recorded and theoretical spectra, and increasing the potential for finding false positives. Therefore, we created a database with peptides from ARFs and peptide variation arising from single nucleotide polymorphisms (SNPs). It is based on the human mRNA sequences from the well-annotated reference sequence (RefSeq) database and associated variation information derived from the Single Nucleotide Polymorphism Database (dbSNP). In this process, we removed all non-polymorphic information. Investigation of the frequency of SNPs in the dbSNP revealed that many SNPs are non-polymorphic “SNPs”. Therefore, we removed those from our dedicated database, and this resulted in a comprehensive high quality database, which we coined the Human Short Peptide Variation Database (HSPVdb). The value of our HSPVdb is shown by identification of the majority of published polymorphic SNP- and/or ARF-derived epitopes from a mass spectrometry-based proteomics workflow, and by a large variety of polymorphic peptides identified as potential T cell epitopes in the HLA-ligandome presented by the Epstein–Barr virus cells
- …
