977 research outputs found
KROME - a package to embed chemistry in astrophysical simulations
Chemistry plays a key role in many astrophysical situations regulating the
cooling and the thermal properties of the gas, which are relevant during
gravitational collapse, the evolution of disks and the fragmentation process.
In order to simplify the usage of chemical networks in large numerical
simulations, we present the chemistry package KROME, consisting of a Python
pre-processor which generates a subroutine for the solution of chemical
networks which can be embedded in any numerical code. For the solution of the
rate equations, we make use of the high-order solver DLSODES, which was shown
to be both accurate and efficient for sparse networks, which are typical in
astrophysical applications. KROME also provides a large set of physical
processes connected to chemistry, including photochemistry, cooling, heating,
dust treatment, and reverse kinetics.
The package presented here already contains a network for primordial
chemistry, a small metal network appropriate for the modelling of low
metallicities environments, a detailed network for the modelling of molecular
clouds, a network for planetary atmospheres, as well as a framework for the
modelling of the dust grain population. In this paper, we present an extended
test suite ranging from one-zone and 1D-models to first applications including
cosmological simulations with ENZO and RAMSES and 3D collapse simulations with
the FLASH code. The package presented here is publicly available at
http://kromepackage.org/ and https://bitbucket.org/krome/krome_stableComment: accepted for publication in MNRA
Design Principles for Sparse Matrix Multiplication on the GPU
We implement two novel algorithms for sparse-matrix dense-matrix
multiplication (SpMM) on the GPU. Our algorithms expect the sparse input in the
popular compressed-sparse-row (CSR) format and thus do not require expensive
format conversion. While previous SpMM work concentrates on thread-level
parallelism, we additionally focus on latency hiding with instruction-level
parallelism and load-balancing. We show, both theoretically and experimentally,
that the proposed SpMM is a better fit for the GPU than previous approaches. We
identify a key memory access pattern that allows efficient access into both
input and output matrices that is crucial to getting excellent performance on
SpMM. By combining these two ingredients---(i) merge-based load-balancing and
(ii) row-major coalesced memory access---we demonstrate a 4.1x peak speedup and
a 31.7% geomean speedup over state-of-the-art SpMM implementations on
real-world datasets.Comment: 16 pages, 7 figures, International European Conference on Parallel
and Distributed Computing (Euro-Par) 201
Order reduction approaches for the algebraic Riccati equation and the LQR problem
We explore order reduction techniques for solving the algebraic Riccati
equation (ARE), and investigating the numerical solution of the
linear-quadratic regulator problem (LQR). A classical approach is to build a
surrogate low dimensional model of the dynamical system, for instance by means
of balanced truncation, and then solve the corresponding ARE. Alternatively,
iterative methods can be used to directly solve the ARE and use its approximate
solution to estimate quantities associated with the LQR. We propose a class of
Petrov-Galerkin strategies that simultaneously reduce the dynamical system
while approximately solving the ARE by projection. This methodology
significantly generalizes a recently developed Galerkin method by using a pair
of projection spaces, as it is often done in model order reduction of dynamical
systems. Numerical experiments illustrate the advantages of the new class of
methods over classical approaches when dealing with large matrices
NEMATODE COOMUNITIES AS INDICATORS OF SOIL QUALITY IN VINEYARD SYSTEM: A CASE OF STUDY IN DEGRADED AREAS
The restoring effect of selective agronomic strategies on optimal soil functionality of degraded areas within organic vineyard was evaluated using the nematode community as an indicator of soil quality. Three different restoring strategies were implemented in two organic farms located in Tuscany (Italy). The relative abundance of nematode trophic groups and the maturity index showed that the use of compost improved soil biological quality and increased the abundance of predators. Instead, dry mulching and green manure applications were useful to control the most dangerous nematodes of grapevines, namely the virus-vector Xiphinema index (Longidoridae)
Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception
Choosing an appropriate set of stimuli is essential to characterize the
response of a sensory system to a particular functional dimension, such as the
eye movement following the motion of a visual scene. Here, we describe a
framework to generate random texture movies with controlled information
content, i.e., Motion Clouds. These stimuli are defined using a generative
model that is based on controlled experimental parametrization. We show that
Motion Clouds correspond to dense mixing of localized moving gratings with
random positions. Their global envelope is similar to natural-like stimulation
with an approximate full-field translation corresponding to a retinal slip. We
describe the construction of these stimuli mathematically and propose an
open-source Python-based implementation. Examples of the use of this framework
are shown. We also propose extensions to other modalities such as color vision,
touch, and audition
Chapter 6. Main Results - Conclusions from GEM-CON-BIO: Governance and Ecosystem Management for Conservation of Biodiversity.
An astrobiological experiment to explore the habitability of tidally locked M-dwarf planets
We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation
Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research.
Functions of rational Krylov space matrices and their decay properties
Rational Krylov subspaces have become a fundamental ingredient in numerical linear algebra methods associated with reduction strategies. Nonetheless, many structural properties of the reduced matrices in these subspaces are not fully understood. We advance in this analysis by deriving bounds on the entries of rational Krylov reduced matrices and of their functions, that ensure an a-priori decay of their entries as we move away from the main diagonal. As opposed to other decay pattern results in the literature, these properties hold in spite of the lack of any banded structure in the considered matrices. Numerical experiments illustrate the quality of our results
Biogenesis of Pro-senescent Microparticles by Endothelial Colony Forming Cells from Premature Neonates is driven by SIRT1-Dependent Epigenetic Regulation of MKK6.
Senescent cells may exert detrimental effect on microenvironment through the secretion of soluble factors and the release of extracellular vesicles, such as microparticles, key actors in ageing and cardiovascular diseases. We previously reported that sirtuin-1 (SIRT1) deficiency drives accelerated senescence and dysfunction of endothelial colony-forming cells (ECFC) in PT neonates. Because preterm birth (PT) increases the risk for cardiovascular diseases during neonatal period as well as at adulthood, we hypothesized that SIRT1 deficiency could control the biogenesis of microparticles as part of a senescence-associated secretory phenotype (SASP) of PT-ECFC and investigated the related molecular mechanisms. Compared to control ECFC, PT-ECFC displayed a SASP associated with increased release of endothelial microparticles (EMP), mediating a paracrine induction of senescence in naïve endothelial cells. SIRT1 level inversely correlated with EMP release and drives PT-ECFC vesiculation. Global transcriptomic analysis revealed changes in stress response pathways, specifically the MAPK pathway. We delineate a new epigenetic mechanism by which SIRT1 deficiency regulates MKK6/p38 <sup>MAPK</sup> /Hsp27 pathway to promote EMP biogenesis in senescent ECFC. These findings deepen our understanding of the role of ECFC senescence in the disruption of endothelial homeostasis and provide potential new targets towards the control of cardiovascular risk in individuals born preterm
- …
