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Inexact Arnoldi residual estimates and decay properties
for functions of non-Hermitian matrices
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Abstract1

This paper derives a priori residual-type bounds for the Arnoldi approximation of2

a matrix function together with a strategy for setting the iteration accuracies in the3

inexact Arnoldi approximation of matrix functions. Such results are based on the4

decay behavior of the entries of functions of banded matrices. Specifically, a priori5

decay bounds for the entries of functions of banded non-Hermitian matrices will be6

exploited, using Faber polynomial approximation. Numerical experiments illustrate7

the quality of the results.8
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1 Introduction12

Matrix functions have arisen as a reliable and a computationally attractive tool for13

solving a large variety of application problems; we refer the reader to [27] for a14

thorough discussion and references. Given a complex n×n matrix A and a sufficiently15

regular function f , we are interested in the approximation of the matrix function f (A)16

times a vector v, that is f (A)v, where we assume that v has unit Euclidean norm. To17

this end, we consider the orthogonal projection onto a subspace Vm of dimension m18

much smaller than n, obtaining the approximation19

f (A) v ≈ Vm f (Hm) w, (1.1)20

with Vm an n × m matrix whose columns form an orthonormal basis of Vm , Hm =21

V ∗
m AVm , and w = V ∗

mv. In this paper, we will focus on the case in which Vm is the22

Krylov subspace23

Km(A, v) = span{v, Av, . . . , Am−1v}24

and Vm is the orthogonal basis obtained by the Arnoldi algorithm; see, e.g., [27, chapter25

13]. Arnoldi-type approximations for the matrix exponential have been deeply inves-26

tigated, and estimates of the error norm ‖e−t Av−Vme−t Hm e1‖ for A non-normal have27

been given for instance by Saad [38], by Lubich and Hochbruck in [28], and recently28

by Wang and Ye in [42,43]. Other methods related to the Arnoldi approximation can be29

found in [1,17,21,22] where restarted techniques are considered. Regarding rational30

Krylov approximations of matrix functions, we refer the reader to the review [25] and31

to the black-box rational Arnoldi variant given in [26].32

When Vm is the output of the Arnoldi algorithm, Hm is an upper Hessenberg matrix;33

that is a banded matrix with zero elements below the second lower diagonal. It can34

be shown that under certain assumptions the elements of f (Hm) below the main35

diagonal are characterized by a decay behavior. Indeed, given a square banded matrix36

B, the entries of the matrix function f (B) for a sufficiently regular function f are37

characterized by a—typically exponential—decay pattern as they move away from the38

main diagonal. This phenomenon has been known for a long time, and it is at the basis39

of approximations and estimation strategies in many fields, from signal processing40

to quantum dynamics and multivariate statistics; for a detailed description of relevant41

problems and a more comprehensive list of application fields where capturing the decay42

is particularly important we refer the reader to [3,4,7]. The interest in a priori estimates43

that can accurately predict the decay rate of matrix functions has significantly grown44

in the past decades, and it has mainly focused on Hermitian matrices [5,7,9,11,12,18,45

35,44]; the inverse and exponential functions have been given particular attention, due46

to their relevance in numerical analysis and other fields. Upper bounds usually take47

the form48

|( f (B))k,ℓ| ≤ cρ|k−ℓ|, (1.2)49



where ρ ∈ (0, 1); both ρ and c depend on the spectral properties of B and on the50

domain of f , while ρ also strongly depends on the bandwidth of B.51

In the case of a banded Hermitian matrix B, bounds of the Arnoldi approximation52

have been used to obtain upper estimates showing the decay phenomenon occurring53

in the entries of f (B); see for instance [7] for the exponential function. Here we will54

exploit this connection but in the reverse direction. More precisely, we will first derive55

decay bounds for the entries of banded non-Hermitian matrices. Then we will apply56

such bounds to the matrix function f (Hm), with Hm the upper Hessenberg matrix given57

by the Arnoldi algorithm, obtaining a priori bounds for the quality of the approximation58

(1.1), when a residual-based measure is used; these bounds complement available ones59

in the already mentioned literature for the Arnoldi approximation. Furthermore, we60

will use the described bounds in the inexact Krylov approximation of matrix functions;61

in particular, the bounds can be used to devise a priori relaxing thresholds for the inexact62

matrix-vector multiplications with A, whenever A is not available explicitly. These63

last results generalize the theory developed for f (z) = z−1 and for the eigenvalue64

problem in [40] and [39], respectively; see also [14,31].65

The analysis of the decay pattern for banded non-Hermitian matrices is significantly66

harder than in the Hermitian case, especially for non-normal matrices. In [6] Benzi and67

Razouk addressed this challenging case for diagonalizable matrices. They developed a68

bound of the type (1.2), where c also contains the eigenvector matrix condition number.69

In [33] the authors derive several qualitative bounds, mostly under the assumption70

that A is diagonally dominant. The exponential function provides a special setting,71

which has been explored in [29] and in [42,43]. In all these last articles, and also72

in our approach, bounds on the decay pattern of banded non-Hermitian matrices are73

derived that avoid the explicit reference to the possibly large condition number of74

the eigenvector matrix. Specialized off-diagonal decay results have been obtained for75

certain normal matrices; see, e.g., [11,20,23], and [3] for analytic functions of banded76

matrices over C∗-algebras.77

Starting with the pioneering work [13], most estimates for the decay behavior of the78

entries have relied on Chebyshev and Faber polynomials as technical tool, for two main79

reasons. Firstly, polynomials of banded matrices are again banded matrices, although80

the bandwidth increases with the polynomial degree; see Fig. 1 below for a typical81

example. Secondly, sufficiently regular matrix functions can be written in terms of82

Chebyshev and Faber series, whose polynomial truncations enjoy nice approximation83

properties for a large class of matrices, from which an accurate description of the84

matrix function entries can be deduced. Using Faber polynomials, we will present85

an original derivation of a family of bounds for functions of banded non-Hermitian86

matrices. Such family can be adapted to several cases, depending on the function87

properties and on the matrix spectral properties. Very similar bounds can be obtained88

combining Theorem 10 in [3] with Theorem 3.7 in [6]. Another similar bound is given89

in [33, Theorem 2.6] for the case of multi-banded matrices and in [42, Theorem 3.8] for90

the exponential case. We also refer the reader to [36], where the bounds presented here91

have been extended to matrices with a more general sparsity pattern. Our bounds and92

the ones just cited make use of some approximation of the field of values (numerical93

range) of a matrix. An accurate approximation can be computationally quite expensive94

unless some structural properties can be exploited, as is the case for instance for95



Toeplitz matrices ( [16, Section 3]) or for network adjacency matrices ( [36, Section96

5.3]). Fortunately, for our purposes not-too-accurate field of value approximations can97

suffice, limiting the computational costs.98

The paper is organized as follows. In Sect. 2 we use Faber polynomials to give a99

bound that can be adapted to approximate the entries of several functions of banded100

matrices; as an example we consider the functions eA and e−
√

A. In Sect. 3 and its101

subsections we first show that the derived estimates can be used for a residual-type102

bound in the approximation of f (A)v, for certain functions f by means of the Arnoldi103

algorithm. Then we describe how to employ this bound to reliably estimate the quality104

of the approximation when in the Arnoldi iteration the accuracy in the matrix-vector105

product is relaxed. Numerical experiments illustrate the quality of the bounds. We106

conclude with some remarks in Sect. 4 and with technical proofs in the “Appendix”.107

All our numerical experiments were performed using Matlab (R2013b) [34]. In all108

our experiments, the computation of the field of values employed the code in [10].109

2 Decay bounds for functions of bandedmatrices110

We begin recalling the definition of matrix function and some of its properties. Matrix111

functions can be defined in several ways (see [27, section 1]). For our presentation, it112

is helpful to introduce the definition that employs the Cauchy integral formula.113

Definition 2.1 Let A ∈ C
n×n and f be an analytic function on some open Ω ⊂ C.114

Then115

f (A) =
∫

Γ

f (z) (z I − A)−1 dz,116

where Γ ⊂ Ω is a Jordan curve (or a finite collection of Jordan curves) enclosing the117

eigenvalues of A exactly once, with mathematical positive orientation.118

When f is analytic, Definition 2.1 is equivalent to other common definitions; see119

[37, section 2.3].120

For v ∈ C
n , we denote with ||v|| the Euclidean vector norm, and for any matrix121

A ∈ C
n×n , with ||A|| the induced matrix norm; that is, ||A|| = sup||v||=1 ||Av||. C

+
122

denotes the open right-half complex plane. Moreover, we recall that the field of values123

(or numerical range) of A is defined as the set W (A) = {v∗ Av | v ∈ C
n, ||v|| = 1},124

where v∗ is the conjugate transpose of v. We remark that the field of values of a matrix125

is a bounded convex subset of C. Throughout the paper,
√

z stands for the principal126

square root of z ∈ C. Analogously
√

A indicates the principal square root of the127

matrix A, which exists and is unique when A has no eigenvalues in R
−; see, e.g., [27,128

Theorem 1.29].129

The (k, ℓ) element of a matrix A is denoted by (A)k,ℓ. The set of banded matrices130

is defined as follows.131

Definition 2.2 The notation Bn(β, γ ) defines the set of banded matrices A ∈ C
n×n

132

with upper bandwidth β ≥ 0 and lower bandwidth γ ≥ 0, i.e., (A)k,ℓ = 0 for ℓ−k > β133

and k − ℓ > γ .134



Fig. 1 Typical fill-in pattern of powers of a banded matrix A ∈ Bn(2, 1)

We observe that if A ∈ Bn(β, γ ) with β, γ 
= 0, for135

ξ :=
{

⌈(ℓ − k)/β⌉, if k < ℓ

⌈(k − ℓ)/γ ⌉, if k ≥ ℓ
(2.1)136

it holds that137

(Am)k,ℓ = 0, for every m < ξ ; (2.2)138

see Fig. 1 for a typical fill-in pattern of Am .139

This characterization of banded matrices is a classical fundamental tool to prove the140

decay property of matrix functions, as sufficiently regular functions can be expanded141

in power series. Since we are interested in nontrivial banded matrices, in the following142

we shall assume that both β and γ are nonzero.143

Faber polynomials extend the theory of power series to sets different from the144

disk, and can be effectively used to bound the entries of matrix functions. Let E be145

a continuum (i.e., a non-empty, compact and connected subset of C) with connected146

complement. Then by Riemann’s mapping theorem there exists a function φ that maps147

the exterior of E conformally onto {|z| > 1} and such that148

φ(∞) = ∞, lim
z→∞

φ(z)

z
= d > 0.149

Hence, φ can be expressed by a Laurent expansion φ(z) = dz + a0 + a1
z

+ a2

z2 + · · · .150

Furthermore, for every n > 0 we have151

(φ(z))n = dzn + a
(n)
n−1zn−1 + · · · + a

(n)
0 +

a
(n)
−1

z
+

a
(n)
−2

z2
+ · · · .152

Then the Faber polynomial for the domain E is defined by (see, e.g., [41])153

Φn(z) = dzn + a
(n)
n−1zn−1 + · · · + a

(n)
0 , for n ≥ 0.154



If f is analytic on E , then it can be expanded in a series of Faber polynomials for E ;155

that is,156

f (z) =
∞∑

j=0

f jΦ j (z), for z ∈ E;157

see [41, Theorem 2, p. 52]. If the spectrum of A is contained in E and f is a function158

analytic in E , then the matrix function f (A) can be expanded as follows (see, e.g.,159

[41, p. 272])160

f (A) =
∞∑

j=0

f jΦ j (A).161

If, in addition, E contains the field of values W (A), then for n ≥ 1 we get162

‖Φn(A)‖ ≤ 2, (2.3)163

by Beckermann’s Theorem 1.1 in [2].164

By using the properties of Faber polynomials, in the following theorem we derive165

decay bounds for a large class of matrix functions. Notice that the estimate in [3,166

Theorem 10] combined with the results presented in [6, Theorem 3.7] results in similar167

bounds (see also [19]); moreover, in section 2 of [33], and in particular in Theorem 2.6,168

analogous results are discussed. Another similar bound can be found in [42, Theorem169

3.8] for the case f (z) = ez . The derivation we describe differs from the ones listed170

above by using inequality (2.3).171

Theorem 2.3 Let A ∈ Bn(β, γ ) with field of values contained in a convex continuum172

E. Moreover, let φ be the conformal map sending the exterior of E onto the exterior173

of the unit disk, and let ψ be its inverse. For any τ > 1 such that f is analytic on the174

level set Gτ defined as the complement of the set {ψ(z) : |z| > τ }, it holds175

∣∣( f (A))k,ℓ

∣∣ ≤ 2
τ

τ − 1
max
|z|=τ

| f (ψ(z))|
(

1

τ

)ξ

,176

with ξ defined by (2.1).177

Proof Properties (2.2) and (2.3) imply178

|( f (A))k,ℓ| =

∣∣∣∣∣∣

∞∑

j=0

f j

(
Φ j (A)

)
k,ℓ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∞∑

j=ξ

f j

(
Φ j (A)

)
k,ℓ

∣∣∣∣∣∣
≤ 2

∞∑

j=ξ

| f j |,179

where the Faber coefficients f j are given by (see, e.g., [41, chapter III,Theorem 1])180

f j =
1

2π i

∫

|z|=τ

f (ψ(z))

z j+1
dz.181



Noticing that | f j | ≤ 1
(τ ) j max|z|=τ | f (ψ(z))| gives182

∣∣( f (A))k,ℓ

∣∣ ≤ 2 max
|z|=τ

| f (ψ(z))|
∞∑

j=ξ

(
1

τ

) j

= 2
τ

τ − 1
max
|z|=τ

| f (ψ(z))|
(

1

τ

)ξ

.183

⊓⊔184

The choice of τ in Theorem 2.3, and thus the sharpness of the derived estimate,185

depends on the trade-off between the possible large size of f on the given region,186

and the exponential decay of (1/τ)ξ , and thus it produces an infinite family of bounds187

depending on the problem considered. In our examples, we apply Theorem 2.3 to the188

approximation of the functions f (z) = ez and f (z) = e−
√

z , with z in a properly189

chosen domain.190

Corollary 2.4 Let A ∈ Bn(β, γ ) with field of values contained in a closed set E whose191

boundary is a horizontal ellipse with semi-axes a ≥ b > 0 and center c = c1 + ic2 ∈192

C, c1, c2 ∈ R. Then193

∣∣∣∣
(

eA
)

k,ℓ

∣∣∣∣ ≤ 2ec1
ξ +

√
ξ2 + a2 − b2

ξ +
√

ξ2 + a2 − b2 − (a + b)

(
a + b

ξ

eq(ξ)

1 +
√

1 + (a2 − b2)/ξ2

)ξ

,194

for ξ > b, with q(ξ) = 1 + a2−b2

ξ2+ξ
√

ξ2+a2−b2
and ξ as in (2.1).195

The proof is postponed to the “Appendix”. Notice that for ξ large enough, the decay196

rate is of the form ((a + b)/(2ξ))ξ ; that is, the decay is super-exponential. Moreover,197

in the Hermitian case, we can let b → 0 in Corollary 2.4, thus obtaining a bound that198

is asymptotically equivalent—up to a multiplicative constant—to the one derived in199

[7, Theorem 4.2(ii)].200

The function f (z) = e−
√

z is not analytic in the whole complex plane. This property201

has crucial effects on the approximation.202

Corollary 2.5 Let A ∈ Bn(β, γ ) with field of values contained in a closed set E ⊂ C
+,203

whose boundary is a horizontal ellipse with semi-axes a ≥ b > 0 and center c ∈ C.204

Then,205

∣∣∣∣
(

e−
√

A
)

k,ℓ

∣∣∣∣ ≤ 2q2(a, b, c)

(
a + b

|c|
1

|1 +
√

1 − (a2 − b2)/c2|

)ξ

,206

with ξ defined by (2.1) and207

q2(a, b, c) =

∣∣∣c +
√

c2 − (a2 − b2)

∣∣∣
∣∣∣c +

√
c2 − (a2 − b2)

∣∣∣ − (a + b)
.208



The proof is given in the “Appendix”. If c is not real, then the bound in Corollary 2.5209

can be further improved since the ellipses considered in the proof are not the maximal210

one.211

Remark 2.6 For the sake of simplicity, in the previous corollaries horizontal ellipses212

were employed. However, more general convex sets E may be considered. The pre-213

vious bounds will change accordingly, since the optimal value for τ in Theorem 2.3214

does depend on the parameters associated with E . For instance, for the exponential215

function and a vertical ellipse, we can derive the same bound as in Corollary 2.4 by216

letting b > a. Notice that this is different from exchanging the role of a and b in the217

bound. The proof of this fact is non-trivial but technical, and it is not reported.218

3 Residual bounds for Arnoldi and inexact Arnoldi methods219

3.1 The Arnoldi method220

Given a matrix A ∈ C
n×n and a vector v ∈ C

n , for m ≥ 1 the mth step of the221

Arnoldi algorithm determines an orthonormal basis {v1, . . . , vm} for the Krylov sub-222

space Km(A, v), the subsequent orthonormal basis vector vm+1, an m × m upper223

Hessenberg matrix Hm , and a nonnegative scalar hm+1,m such that224

AVm = Vm Hm + hm+1,mvm+1eT
m,225

where Vm = [v1, . . . , vm]; note that hm+1,m = 0 if and only if the algorithm stops, i.e.,226

Km(A, v) is an invariant subspace of A. Due to the orthogonality of the columns of227

[Vm, vm+1], the matrix Hm is the projection and restriction of A onto Km(A, v); that228

is, Hm = V ∗
m AVm . Throughout the paper we assume exact arithmetic. As commonly229

performed, in our numerical computations we generated the matrix Vm by means230

of the modified Gram-Schmidt method with reorthogonalization, which ensures good231

orthogonality properties of the constructed basis in finite precision arithmetic; see, e.g.,232

[24]. Without loss of generality assume that ‖v‖ = 1. Then the Arnoldi approximation233

to f (A)v is given as Vm f (Hm)e1; see, e.g., [27, chapter 13]. The quantity234

|eT
m f (Hm)e1| = |( f (Hm))m,1|235

– the last entry of the first column of | f (Hm)| – is commonly employed to monitor the236

accuracy of the approximation ‖ f (A)v − Vm f (Hm)e1‖; see, e.g., [38] and a related237

discussion in [30]. In the case of the exponential, e−t Av, the quantity238

rm(t) = |hm+1,meT
me−t Hm e1|239

can be interpreted as the “residual” norm of an associated differential equation; see240

[8] and references therein. This interpretation can be shown to be true also for other241

functions; see, e.g., [15, section 6]). Indeed, assume that y(t) = f (t A)v is the solution242

to the differential equation y(d) = Ay for some dth derivative, d ∈ N and specified243



initial conditions for t = 0. Let ym(t) = Vm f (t Hm)e1 =: Vm ŷm(t). The vector244

ŷm(t) is the solution to the projected differential equation ŷ
(d)
m = Hm ŷm with initial245

condition ŷm(0) = e1. The differential equation residual rm = Aym −y
(d)
m can be used246

to monitor the accuracy of the approximate solution as follows: using the definition247

of ym and the Arnoldi relation, we obtain248

rm(t) = Aym − y(d)
m = AVm f (t Hm)e1 − y(d)

m249

= Vm Hm f (t Hm)e1 − Vm( f (t Hm))(d)e1 + vm+1hm+1,meT
m f (t Hm)e1250

= Vm(Hm ŷm − ŷ(d)
m ) + vm+1hm+1,meT

m f (t Hm)e1251

= vm+1hm+1,meT
m f (t Hm)e1.252

Therefore rm(t) = ‖rm(t)‖.253

Without loss of generality, in the following we consider t = 1. Hence, for simplicity,254

we denote rm = rm(1), and rm = rm(1). We remark that the property Hm = V ∗
m AVm255

ensures that the field of values of Hm is contained in that of A, so that our theory can256

be applied using A as reference matrix to individuate the spectral region of interest.257

We also remark that the inclusion of hm+1,m in rm(t) does not influence the actual258

behavior of the quantity. On the one hand, it holds that hm+1,m ≤ ‖A‖, so that hm+1,m259

could in principle be eliminated from the bound. On the other hand, hm+1,m is not260

going to be small, unless the Krylov subspace is close to an invariant subspace of A, so261

that AVm ≈ Vm Hm . The strength of Krylov subspaces precisely relies on being able262

to obtain good approximations to the sought after quantities far before an invariant263

subspace is determined. Hence our analysis is of interest for m such that the Krylov264

subspace is still far from being an invariant subspace of A, for which hm+1,m is not265

small. This implies that the behavior of hm+1,meT
m f (t Hm)e1 is fully determined by266

the quantity under examination; that is, |eT
m f (t Hm)e1|.267

Let a, b be the semi-axes and c = c1 + ic2 the center of an elliptical region E268

containing the field of values of A. For the entry (k, ℓ) ≡ (m, 1) of f (t Hm) and269

lower bandwidth β = 1 of Hm , the definition in (2.1) yields ξ = m − 1. Hence, from270

Corollary 2.4 and m > b + 1 we deduce the inequality271

|rm | ≤ hm+1,m2e−c1 p(m)

(
eq(m−1)(a + b)

m − 1 +
√

(m − 1)2 + (a2 − b2)

)m−1

, (3.1)272

with273

q(m − 1) = 1 +
(a2 − b2)

(m − 1)2 + (m − 1)
√

(m − 1)2 + (a2 − b2)
274

and275

p(m) =
m − 1 +

√
(m − 1)2 + (a2 − b2)

m − 1 +
√

(m − 1)2 + (a2 − b2) − (a + b)
.276
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Fig. 2 Example 3.1. Approximation of e−Av, with v = (1, . . . , 1)T /
√

n. Top: A =
Toeplitz(−1, 1, 2, 0.1) ∈ B200(1, 2). Bottom: matrix pde225. Left: W (A) (yellow area), eigenvalues

of A (blue asteriks), and enclosing ellipse E (red dashed line). Right: residual norm as the Arnoldi iteration

proceeds in the approximation (black solid line), and residual bound in (3.1) (blue ×).

In [42,43], a similar bound is proposed, where, however, a continuum E with rectan-277

gular shape is considered, instead of the elliptical one we take in Corollary 2.4.278

Example 3.1 Figure 2 shows the behavior of the bound in (3.1) for the residual of279

the Arnoldi approximation of e−Av with v = (1, . . . , 1)T /
√

n. The top plots refer280

to A ∈ B200(1, 2) with Toeplitz structure, A = Toeplitz(−1, 1, 2, 0.1), where the281

underlined element is on the diagonal, while the previous (resp. subsequent) values282

denote the lower (resp. upper) diagonal entries. The bottom plots refer to the matrix283

pde225 of the Matrix Market repository [32]. The left figure shows the field of values284

of the matrix A (yellow area), its eigenvalues (blue asteriks), and the horizontal ellipse285

used in the bound (red dashed line). On the right, we plot the residual associated286

with the Arnoldi approximation as the iteration proceeds (black solid line), and the287

corresponding values of the bound (blue “×”). Matrix exponentials were computed288

by the expm Matlab function.289



3.2 The inexact Arnoldi method290

In an inexact Arnoldi procedure, A is not known exactly (we consider inexactness291

under the assumptions and in the context of [40]). This may be due for instance to the292

fact that A is only implicitly available via functional operations with a vector, which293

can be approximated at some accuracy. To proceed with our analysis, we can formalize294

this inexactness at each iteration k as295

ṽk+1 = Avk + wk ≈ Avk . (3.2)296

Typically, some form of accuracy criterion is implemented, so that ‖wk‖ < ǫ for some297

ǫ. In practice, a different value of this tolerance may be used at each iteration k, i.e.,298

ǫ = ǫk ; for this reason, in the following we assume that this tolerance depends on the299

iteration. The new vector ṽk+1 is then orthonormalized with respect to the previous300

basis vectors to obtain vk+1. In compact form, the original Arnoldi relation becomes301

(A + Em)Vm = Vm Hm + hm+1,mvm+1eT
m, Em = [w1, . . . , wm]V ∗

m .302

Here Hm is again upper Hessenberg; however, Hm = V ∗
m(A + Em)Vm . Moreover, Em303

changes as m grows.304

The quantities ym = Vm f (Hm)e1 and rm = Aym − y
(d)
m can still be defined as in305

the exact case; however the inexact Arnoldi relation should be considered to proceed306

further. Indeed,307

rm = Aym − y(d)
m = AVm f (Hm)e1 − y(d)

m (3.3)308

= −Em Vm f (Hm)e1 + Vm Hm f (Hm)e1 − y(d)
m + vm+1hm+1,meT

m f (Hm)e1309

= −[w1, . . . , wm] f (Hm)e1 + vm+1hm+1,meT
m f (Hm)e1. (3.4)310

We can still define rm = |hm+1,meT
m f (Hm)e1|, but we observe that now rm 
= ‖rm‖.311

Moreover, while rm is computable, the quantity ‖rm‖ is not available, since A is not312

known exactly. With the previous notation we can write ‖rm‖ ≤ |‖rm‖ − rm | + rm313

where314

|‖rm‖ − rm | ≤ ‖[w1, . . . , wm] f (Hm)e1‖.315

Therefore, if ‖[w1, . . . , wm] f (Hm)e1‖ is smaller than the tolerance for the final316

requested accuracy, then rm provides a good measure in a computable stopping crite-317

rion.318

Following a similar discussion in [39,40], we write319

‖[w1, . . . , wm] f (Hm)e1‖ = ‖
m∑

j=1

w j e
T
j f (Hm)e1‖ ≤

m∑

j=1

‖w j‖ |eT
j f (Hm)e1|,320

where ‖w j‖ < ǫ j . As a consequence, ‖[w1, . . . , wm] f (Hm)e1‖ is small when either321

‖w j‖ or |eT
j f (Hm)e1| is small, and not necessarily both. By recalling the exponential322



decay of the entries of f (Hm)e1, ‖w j‖ is in fact allowed to grow with j , in a way323

that is inversely proportional to the exponential decay of the corresponding entries of324

f (Hm)e1, without affecting the overall accuracy. A priori bounds on |eT
j f (Hm)e1|325

can be used to select ǫ j when estimating Av j . This relaxed strategy can significantly326

decrease the computational cost of matrix function evaluations whenever applying A327

accurately is expensive. However, notice that the field of values of Hm is contained in328

the field of values of A+Em . Hence if W (A) is contained in an ellipse ∂ E of semi-axes329

a, b and center c, then W (A + Em) ⊂ W (A) + W (Em). Since330

sup
‖z‖=1

|z∗
Em z| ≤ sup

‖z‖=1

‖Em z‖ ≤

√√√√
m∑

j=1

‖w j‖2 ≤

√√√√
m∑

j=1

ǫ2
j =: ǫ(m),331

the set W (Em) is contained in the disk centered at the origin and radius ǫ(m). Therefore332

W (A) + W (Em) is contained in any set whose boundary has minimal distance from333

∂ E not smaller than ǫ(m). One such set is contained in the ellipse ∂ Em with semi-axes334

a(1 + ǫ(m)/b), b + ǫ(m) and center c. Indeed, z ∈ ∂ Em can be parameterized as335

z =

(
1 +

ǫ(m)

b

)
ρ

2

(
Reiθ +

1

Reiθ

)
+ c, 0 ≤ θ ≤ 2π,336

with ρ =
√

a2 − b2, R = (a + b)/ρ. The distance between z and the ellipse ∂ E is337

∣∣∣∣∣
ǫ(m)

b

ρ

2

(
Reiθ +

1

Reiθ

)∣∣∣∣∣ ≥

∣∣∣∣∣
ǫ(m)

b

ρ

2

(
R −

1

R

)∣∣∣∣∣ = ǫ(m).338

With these definitions and notations we can introduce the following relaxation strategy339

for the inexactness in the Arnoldi procedure.340

Theorem 3.2 Let rm be the (uncomputable) residual in (3.3) after m steps of the inexact341

Arnoldi algorithm and associated function f . Let ǫ(m) > 0 be the maximum allowed342

inexactness tolerance and let tol > 0.343

If for every j ≤ m we have ‖w j‖ ≤ ǫ j with344

ǫ j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

tol

m
max

{
1,

1

s j

}
, if

tol

m s j
< 1

m− j+1

√√√√(ǫ(m))2 −
j−1∑

k=1

ǫ2
k

1

m − j + 1

√√√√(ǫ(m))2 −
j−1∑

k=1

ǫ2
k , otherwise

(3.5)345

then346

|‖rm‖ − rm | ≤ tol,347

and
(∑m

j=1 ǫ j
2
) 1

2 ≤ ǫ(m). Here s j is the upper bound for |eT
j f (Hm)e1| from Theo-348

rem 2.3 if j is such that this bound can be determined, otherwise s j = 1; W (A) in349



Theorem 2.3 is contained in an ellipse with semiaxes a ≥ b > 0 and center c, and E350

is the ellipse with semiaxes a(1 + ǫ(m)/b), b + ǫ(m) and center c.351

The bound of Theorem 3.2 can be specialized for the functions f (z) = ez and352

f (z) = e−
√

z using respectively Corollaries 2.4 and 2.5.353

In the following, we report on some experiments illustrating our findings. We con-354

sider the norm of the differential equation residual at time t = 1, that is355

‖Aym − y(d)
m ‖, (3.6)356

where ym = Vm f (Hm)e1 is computed with an inexact Arnoldi procedure. Clearly, the357

matrices Vm, Hm differ as we allow ǫ j to vary at each iteration j . Hence, we compared358

two different strategies for chosing ǫ j :359

(i) A fixed small tolerance ǫ j ≡ tol/m for all js, denoting the associated residual360

norm (3.6) by ||r j ||;361

(ii) A variable accuracy ǫ j := ǫ j obtained from (3.5), denoting the associated residual362

norm in (3.6) by ||r̄ j ||.363

We anticipate that our numerical experiments do not emphasize any visible degra-364

dation in the differential residual norm, if we relax the accuracy in the construction of365

the Krylov space as it is done in (ii) above, and the two residual norms stagnate at the366

same level.367

Example 3.3 We consider the approximation of exp(−A)v by the inexact Arnoldi368

procedure. The inexact matrix-vector product is implemented as in (3.2), with ‖w j‖ =369

ǫ j . Figure 3 reports our results for v = (1, . . . , 1)T /
√

n and the same matrices as in370

Example 3.1: A = Toeplitz(−1, 1, 2, 0.1) ∈ B200(1, 2) (left), and pde225 from371

the Matrix Market repository [32] (right). For this set of experiments, we considered372

tol = 10−10 and ǫ(m) = 10−1. The solid line shows the residual norm ||r j || as the373

iteration j proceeds for ǫ j = tol/m (dashed line in the plot). The circles display the374

residual norm ‖r̄ j‖ for the variable accuracy ǫ j := ǫ j (increasing asterisk curve in375

the plot) obtained from (3.5). The maximum number of iterations m was chosen as the376

smallest value for which the bound (3.1) is lower than tol, respectively m = 20 and377

m = 31. A larger, more conservative value could have been considered. The fields of378

values of the matrices can be obtained starting from those reported in the left plots379

of Fig. 2, where now the original semi-axes a, b of the elliptical sets considered for380

the computation of s j are increased by ǫ(m)/b and ǫ(m) respectively. The plots show381

visually overlapping residual norm histories for the two choices of ǫ j , illustrating that382

in practice no loss of information takes place when using the relaxation strategy.383

Consider the second order differential equation y(2) = Ay, with y(0) = v. Its384

solution can be expressed as y(t) = exp(−t
√

A)v, and our results can be applied.385

This time the upper bound s j for |eT
m f (Hm)e1| is obtained from Corollary 2.5.386

Example 3.4 For the same experimental setting as in Example 3.3, we consider approx-387

imating exp(−
√

A)v, for the matrix A = Toeplitz(−1, 1, 3, 0.1) ∈ B200(1, 2), the388

vector v = (1, . . . , 1)T /
√

200 and m = 35 iterations (W (A) is given by translat-389

ing by 1 the field of values of the Toeplitz matrix in Example 3.1). Figure 4 reports390
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Fig. 3 Example 3.3, approximation of e−Av with v = (1, . . . , 1)T /
√

n. Residual norm ‖r j ‖ with constant

accuracy ǫ j = tol/m, and residual norm ‖r̄ j ‖ with ǫ j = ǫ j by (3.5) as the inexact Arnoldi method

proceeds. Left: For A = Toeplitz(−1, 1, 2, 0.1) ∈ B200(1, 2). Right: For matrix pde225 from the Matrix

Market repository [32]
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Fig. 4 Example 3.4. Approximation of exp(−
√

A)v with A = Toeplitz(−1, 1, 3, 0.1) ∈ B200(1, 2) and

v = (1, . . . , 1)T /
√

n. The residual norm ||r j || is obtained with constant accuracy ǫ j = tol/m; the residual

norm ‖r̄ j ‖ is obtained with ǫ j = ǫ j given by (3.5).

on our findings, with the same description as for the previous example. Here s j in391

(3.5) is obtained from Corollary 2.5, and it is used to relax the accuracy ǫ j . Similar392

considerations apply.393



4 Conclusions394

We have considered the approximation of f (A)v by means of the inexact Arnoldi395

method, in which matrix-vector products with A cannot be computed exactly. We396

have first derived computable bounds for the off-diagonal decay pattern of functions397

of non-Hermitian banded matrices. The accuracy of the bounds depends on the quality398

of the set enclosing and approximating the field of values of A. Then we have used399

these estimates to devise a new relaxation strategy for inexact matrix-vector operations,400

that does not influence the convergence of the residual norm in the matrix function401

approximation, while decreasing the computational cost for the inexact matrix-vector402

product. Similar results can be obtained for other Krylov-type approximations whose403

projection and restriction matrix Hm has a semi-banded structure. This is the case for404

instance of the Extended Krylov subspace approximation; see, e.g., [30] and references405

therein.406
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A Technical proofs411

Proof of corollary 2.4412

Let ρ =
√

a2 − b2 be the distance between the foci and the center of the ellipse (i.e.,413

the boundary of E), and let R = (a + b)/ρ. Then a conformal map for E is414

φ(w) =
w − c −

√
(w − c)2 − ρ2

ρR
, (A.1)415

and its inverse is416

ψ(z) =
ρ

2

(
Rz +

1

Rz

)
+ c ; (A.2)417

see, e.g., [41, chapter II, Example 3]. Notice that418

max
|z|=τ

|eψ(z)| = max
|z|=τ

eℜ(ψ(z)) = e
ρ
2

(
Rτ+ 1

Rτ

)
+c1

.419

Hence by Theorem 2.3 we get420

∣∣∣∣
(

eA
)

k,ℓ

∣∣∣∣ ≤ 2
τ

τ − 1
ec1 e

ρ
2

(
Rτ+ 1

Rτ

) (
1

τ

)ξ

.421



The optimal value of τ > 1 that minimizes e
ρ
2

(
Rτ+ 1

Rτ

) (
1
τ

)ξ
is422

τ =
ξ +

√
ξ2 + ρ2

ρR
.423

Moreover, the condition τ > 1 is satisfied if and only if ξ >
ρ
2

(
R − 1

R

)
= b. Finally,424

noticing that425

ψ

(
ξ +

√
ξ2 + ρ2

ρR

)
− c1 =

1

2

(
ξ +

√
ξ2 + ρ2 +

ρ2

ξ +
√

ξ2 + ρ2

)
= ξq(ξ),426

and collecting ξ the proof is completed. ⊓⊔427

Proof of corollary 2.5428

The function f (z) = exp(−
√

z) is analytic on C \ (−∞, 0). Since we consider the429

principal square root, then ℜ(
√

z) ≥ 0, and430

| exp(−
√

z)| = exp(−ℜ(
√

z)) ≤ 1.431

Hence, by Theorem 2.3 we can determine τ for which432

∣∣∣∣
(

e−
√

A
)

k,ℓ

∣∣∣∣ ≤ 2
τ

τ − 1

(
1

τ

)ξ

.433

For every ε > 0 close enough to zero, we set the parameter434

τε = |φ(ε)| =

∣∣∣∣∣
c − ε +

√
(c − ε)2 − ρ2

ρR

∣∣∣∣∣ ,435

with φ(w) as in (A.1) and ψ(z) its inverse (A.2). Then the ellipse {ψ(z), |z| = τε} is436

contained in C\(−∞, 0]. Letting ε → 0 concludes the proof. ⊓⊔437
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