325 research outputs found

    Ion association in concentrated NaCI brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Get PDF
    Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H(2)O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m) NaCl–water mixtures under ambient (25°C, 1 bar), hydrothermal (325°C, 1 kbar) and deep crustal (625°C, 15 kbar) conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757). With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (Na(n)Cl(m))(n-m )clusters in addition to simple NaCl ion pairs. Large polyatomic (Na(n)Cl(m))(n-m )clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions

    Magmatic plumbing at Lucky Strike volcano based on olivine-hosted melt inclusion compositions

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 126–147, doi:10.1002/2014GC005517.Here we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens has been seismically imaged on a slow-spreading ridge. Vapor-saturation pressures, calculated from CO2 and H2O contents of Lucky Strike melt inclusions, range from approximately 300–3000 bars, corresponding to depths of 0.5–9.9 km below the seafloor. Approximately 50% of the melt inclusions record crystallization depths of 3–4 km, corresponding to the seismically imaged melt lens depth, while an additional ∼35% crystallize at depths > 4 km. This indicates that while crystallization is focused within the melt lens, significant crystallization also occurs in the lower crust and/or upper mantle. The melt inclusions span a range of major and trace element concentrations from normal to enriched basalts. Trace element ratios at all depths are heterogeneous, suggesting that melts are not efficiently homogenized in the mantle or crust, despite the presence of a melt lens. This is consistent with the transient nature of magma chambers proposed for slower-spreading ridges. To investigate the petrogenesis of the melt inclusion compositions, we compare the measured trace element compositions to theoretical melting calculations that consider variations in the melting geometry and heterogeneities in the mantle source. The full range of compositions can be produced by slight variations in the proportion of an Azores plume and depleted upper mantle components and changes in the total extent of melting.thanked for his help with sample preparation. The GRAVILUCK'06 and Bathyluck'08 cruises where financed by the French Ministry of Research. This work was supported by NSF grant OCE-0926422 to A.M.S., OCE-PRF-1226130 to V.D.W., OCE-1333492 to S.A.S., and EAR-09-48666 to M.D.B., and by ANR (France) Mothseim Project NT05-342213 to J.E.2015-07-2

    Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Get PDF
    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies

    Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads

    Get PDF
    Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may facilitate survival in extreme habitats

    The granite‑hosted Variscan gold deposit from Santo António mine in the Iberian Massif (Penedono, NW Portugal): constraints from mineral chemistry, fuid inclusions, sulfur and noble gases isotopes

    Get PDF
    The study area is located in the Central Iberian Zone, a major tectonic unit of the Iberian Massif (Variscan belt). In this region the basement is composed of Cambrian-Ordovician sedimentary and minor volcanic rocks that underwent deformation and metamorphism during the Carboniferous. These metamorphic rocks host ca. 331–308 Ma granitic plutons emplaced during the D2 extensional and D3–D4 contractional deformation phases. The gold-bearing quartz veins from the Santo António mine (Penedono region) occur in granite formed at 310.1 ± 1.1 Ma and post-dated the peak of metamorphism. Gold–silver alloy is included in quartz, but mainly occurs in spaces between grains or micro-fractures within arsenopyrite of all three generations and less in pyrite. Late sulphides and sulphosalts were deposited along fractures mainly in arsenopyrite, and locally surrounding the gold–silver alloy grains. Ferberite, scheelite and stolzite replace arsenopyrite. The abundant aqueous carbonic fluids and the occurrence of a low-salinity fluid and their minimum possible entrapment temperature of 360–380 °C suggest that this gold-forming event began during the waning stages of the Variscan orogeny. The mean δ34S values of arsenopyrite and pyrite are − 4.7‰ and − 3.8‰, respectively. He–Ar–Ne isotopic data suggest a crustal origin. The ascent of the granite magma has provided the heat for remobilization of gold, other metals and metalloids from the metamorphic rocks. This gold-arsenopyrite deposit has thus similar characteristics as other selected gold-arsenopyrite deposits from the Iberian Massif, but it contains tungstates.El área de estudio está ubicada en la Zona Centroibérica, una importante unidad tectónica del Macizo Ibérico (cinturón varisco). En esta región el basamento está compuesto por rocas sedimentarias y volcánicas del Cámbrico-Ordovícico tectonizadas y metamorfzadas durante el Carbonífero. Estas rocas metamórfcas sirven como caja de los plutones graníticos datados en torno a 331–308 Ma y que fueron emplazados durante la fase de deformación extensional D2 y las fases de deformación contraccional D3 y D4. Las venas de cuarzo ricas en oro de la mina de Santo António (región de Penedono) que aparecen en un granito datado a los 310.1 ± 1.1 Ma son posteriores al pico metamórfco regional. La aleación de oro y plata se incluye en el cuarzo, pero se produce principalmente en los espacios entre granos o micro-fracturas dentro de arsenopirita de las tres generaciones y menos en pirita. Los sulfuros y sulfuros tardíos se depositaron a lo largo de las fracturas principalmente en arsenopirita, y alrededor de los granos de aleación de oro y plata. Ferberita, scheelita y la estolzita sustituyen a la arsenopirita. Los abundantes líquidos acuosos carbónicos y la presencia de un fuido de baja salinidad y su posible temperatura de atrapamiento mínima en torno de 360-380 ºC sugieren que este evento de formación de oro comenzó durante las etapas fnales de la orogenia varisca. Los valores medios de S de arsenopirita y pirita son − 4.7 ‰ y − 3.8 ‰, respectivamente. Los datos isotópicos de He–Ar–Ne sugieren que en el origen de los fuidos mineralizados participa la corteza continental. El ascenso del magma granítico ha provisto el calor para la movilización del oro, otros metales y metaloides desde las rocas metamórfcas. Este depósito de oroarsenopirita tiene así características similares a otros yaciamientos con arsenopirita y oro del Macizo Ibérico, pero sin embargo contienen tungstates.This research was financially supported by Fundação para a Ciência e Tecnologia through the projects GOLDGranites, Orogenesis, Long-term strain/stress and Deposition of ore metals—PTDC/GEO-GEO/2446/2012: COMPETE: FCOMP-01-0124-FEDER-029192 and UID/GEO/04035/2013

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-
    corecore