89 research outputs found
Neural Networks for Hyperspectral Imaging of Historical Paintings: A Practical Review
Hyperspectral imaging (HSI) has become widely used in cultural heritage (CH). This very efficient method for artwork analysis is connected with the generation of large amounts of spectral data. The effective processing of such heavy spectral datasets remains an active research area. Along with the firmly established statistical and multivariate analysis methods, neural networks (NNs) represent a promising alternative in the field of CH. Over the last five years, the application of NNs for pigment identification and classification based on HSI datasets has drastically expanded due to the flexibility of the types of data they can process, and their superior ability to extract structures contained in the raw spectral data. This review provides an exhaustive analysis of the literature related to NNs applied for HSI data in the CH field. We outline the existing data processing workflows and propose a comprehensive comparison of the applications and limitations of the various input dataset preparation methods and NN architectures. By leveraging NN strategies in CH, the paper contributes to a wider and more systematic application of this novel data analysis method
Palaeontological data about the climatic trends from Chattian to present along the Northeastern Atlantic frontage
Climatic changes that affected the Northeastern Atlantic frontage are analyzed on the basis of the evolution of faunas and floras from the late Oligocene onwards. The study deals with calcareous nannoplankton, marine micro- and macrofaunas, some terrestrial vertebrates and vegetal assemblages. The climate, first tropical, underwent a progressive cooling (North-South thermic gradient). Notable climatic deteriorations (withdrawal towards the South or disappearance of taxa indicative of warm climate and appearance of "cold" taxa) are evidenced mainly during the Middle Miocene and the late Pliocene. Faunas and floras of modern pattern have regained, after the Pleistocene glaciations, a new climatic ranging of a temperate type in the northern part
A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia
International audienceRelevant preclinical mouse models are crucial to screen new therapeutic agents for acute myeloid leukemia (AML). Current in vivo models based on the use of patient samples are not easy to establish and manipulate in the laboratory. Our objective was to develop robust xenograft models of human AML using well-characterized cell lines as a more accessible and faster alternative to those incorporating the use of patient-derived AML cells. Five widely used AML cell lines representing various AML subtypes were transplanted and expanded into highly immunodeficient non-obese diabetic/LtSz-severe combined immunodeficiency IL2R gamma(null)(c) mice (for example, cell line-derived xenografts). We show here that bone marrow sublethal conditioning with busulfan or irradiation has equal efficiency for the xenotransplantation of AML cell lines. Although higher number of injected AML cells did not change tumor engraftment in bone marrow and spleen, it significantly reduced the overall survival in mice for all tested AML cell lines. On the basis of AML cell characteristics, these models also exhibited a broad range of overall mouse survival, engraftment, tissue infiltration and aggressiveness. Thus, we have established a robust, rapid and straightforward in vivo model based on engraftment behavior of AML cell lines, all vital prerequisites for testing new therapeutic agents in preclinical studies
A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression
Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFÎșB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner
Uncovering the Oppenheimer Siddur: using scientific analysis to reveal the production process of a medieval illuminated Hebrew manuscript
The aim of this research was to use non-invasive scientifc analysis to uncover evidence of the planning process and relationship between pigments used in text copying and artwork production in the Oppenheimer Siddur (Oxford Bodleian Library MS Opp. 776), an illuminated 15th-century Hebrew prayer book. In many medieval Hebrew illuminated manuscripts, the authorship of the artwork is unknown. This manuscriptâs colophon states that it was copied by its scribe-owner for personal family use but does not confrm who was responsible for the artwork. Prior deductive analysis suggested that the scribe-owner may also have been the manuscriptâs artist, based on common motifs and an apparent shared colour palette appearing in both texts and artwork. Visual examination using high resolution digital images also identifed points of contact between pigments used in the manuscriptâs texts and artwork, raising questions about the pigment application sequence, and concurrent versus sequential text copying and artwork production. An in-house developed remote spectral imaging system (PRISMS) with 10 flters spanning the spectral range from 400 to 880 nm was modifed for close-range application to image two of the folios to examine the sequence of production, identify the pigments and compare the materials used for the illumination and the text. Optical microscopy and Fourier Transform Infrared spectroscopy in the attenuated total refection mode (FTIR-ATR) were used directly on the folios to complement the spectral imaging data in binding media and pigment identifcation. The results revealed close matches in refectance spectra for the colorants and inks used in both text copying and illuminations, suggesting that the same mixture of colorants and inks have been used. The spectral imaging in the near infrared bands revealed a hidden underdrawing, indicating a design change during production of the manuscript, and the outlining of letters prior to coloured pigment being applied. The pigment use, the variation in the binder for diferent pigments and some elements of its production were found to be consistent with those described in historical sources. The evidence from this study supports the hypothesis that the scribe applied pigments for the manuscriptâs artwork at the same time he did some of the scribal work which has implications for understandings of Jewish medieval visual cultures
Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films
This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m-2. The optical-structural, mechanical and barrier property of BC films were studied and compared with those of highly beaten VC films. The Youngs moduli and tensile index of the BC films are much higher than those obtained for VC (14.5 16.2 GPa vs 10.8 8.7 GPa and 146.7 64.8 N.m.g-1 vs 82.8 40.5 N.m.g-1), respectively. Calendering increased significantly the transparency of BC films from 53.0 % to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.The authors thank FCT (Fundação para a CiĂȘncia e Tecnologia) and FEDER (Fundo Europeu de
Desenvolvimento Regional) for the ïŹnancial support of the project FCT PTDC/AGR-FOR/3090/2012â FCOMP-01-0124-FEDER-027948 and the awarding of a research grant for Vera Costa
Vanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia
The pantetheinase vanin-1 generates cysteamine, which inhibits reduced glutathione (GSH) synthesis. Vanin-1 promotes inflammation and tissue injury partly by inducing oxidative stress, and partly by peroxisome proliferator-activated receptor gamma (PPARÎł) expression. Vascular smooth muscle cells (SMCs) contribute to neointimal hyperplasia in response to injury, by multiple mechanisms including modulation of oxidative stress and PPARÎł. Therefore, we tested the hypothesis that vanin-1 drives SMC activation and neointimal hyperplasia. We studied reactive oxygen species (ROS) generation and functional responses to platelet-derived growth factor (PDGF) and the pro-oxidant diamide in cultured mouse aortic SMCs, and also assessed neointima formation after carotid artery ligation in vanin-1 deficiency. Vnn1â/â SMCs demonstrated decreased oxidative stress, proliferation, migration, and matrix metalloproteinase 9 (MMP-9) activity in response to PDGF and/or diamide, with the effects on proliferation linked, in these studies, to both increased GSH levels and PPARÎł expression. Vnn1â/â mice displayed markedly decreased neointima formation in response to carotid artery ligation, including decreased intima:media ratio and cross-sectional area of the neointima. We conclude that vanin-1, via dual modulation of GSH and PPARÎł, critically regulates the activation of cultured SMCs and development of neointimal hyperplasia in response to carotid artery ligation. Vanin-1 is a novel potential therapeutic target for neointimal hyperplasia following revascularization
Bio++: Efficient Extensible Libraries and Tools for Computational Molecular Evolution
Efficient algorithms and programs for the analysis of the ever-growing amount of biological sequence data are strongly needed in the genomics era. The pace at which new data and methodologies are generated calls for the use of pre-existing, optimizedâyet extensibleâcode, typically distributed as libraries or packages. This motivated the Bio++ project, aiming at developing a set of C++ libraries for sequence analysis, phylogenetics, population genetics, and molecular evolution. The main attractiveness of Bio++ is the extensibility and reusability of its components through its object-oriented design, without compromising the computer-efficiency of the underlying methods. We present here the second major release of the libraries, which provides an extended set of classes and methods. These extensions notably provide built-in access to sequence databases and new data structures for handling and manipulating sequences from the omics era, such as multiple genome alignments and sequencing reads libraries. More complex models of sequence evolution, such as mixture models and generic n-tuples alphabets, are also included
Saccharomyces boulardii Improves Intestinal Cell Restitution through Activation of the α2ÎČ1 Integrin Collagen Receptor
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the cessation of inflammation and the migration of enterocytes to repair the damaged epithelium. Lyophilized Saccharomyces boulardii (Sb, Biocodex) is a nonpathogenic yeast widely used as a therapeutic agent for the treatment and prevention of diarrhea and other gastrointestinal disorders. In this study, we determined whether Sb could accelerate enterocyte migration. Cell migration was determined in Sb force-fed C57BL6J mice and in an in vitro wound model. The impact on α2ÎČ1 integrin activity was assessed using adhesion assays and the analysis of α2ÎČ1 mediated signaling pathways both in vitro and in vivo. We demonstrated that Sb secretes compounds that enhance the migration of enterocytes independently of cell proliferation. This enhanced migration was associated with the ability of Sb to favor cell-extracellular matrix interaction. Indeed, the yeast activates α2ÎČ1 integrin collagen receptors. This leads to an increase in tyrosine phosphorylation of cytoplasmic molecules, including focal adhesion kinase and paxillin, involved in the integrin signaling pathway. These changes are associated with the reorganization of focal adhesion structures. In conclusion Sb secretes motogenic factors that enhance cell restitution through the dynamic regulation of α2ÎČ1 integrin activity. This could be of major importance in the development of novel therapies targeting diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases
- âŠ