3,431 research outputs found

    Development of a real-time full-field range imaging system

    Get PDF
    This article describes the development of a full-field range imaging system employing a high frequency amplitude modulated light source and image sensor. Depth images are produced at video frame rates in which each pixel in the image represents distance from the sensor to objects in the scene. The various hardware subsystems are described as are the details about the firmware and software implementation for processing the images in real-time. The system is flexible in that precision can be traded off for decreased acquisition time. Results are reported to illustrate this versatility for both high-speed (reduced precision) and high-precision operating modes

    The First Galaxies: Chemical Enrichment, Mixing, and Star Formation

    Full text link
    Using three-dimensional cosmological simulations, we study the assembly process of one of the first galaxies, with a total mass of 10^8 M_sun, collapsing at z = 10. Our main goal is to trace the transport of the heavy chemical elements produced and dispersed by a pair-instability supernova exploding in one of the minihalo progenitors. To this extent, we incorporate an efficient algorithm into our smoothed particle hydrodynamics code which approximately models turbulent mixing as a diffusion process. We study this mixing with and without the radiative feedback from Population III stars that subsequently form in neighboring minihalos. Our simulations allow us to constrain the initial conditions for second-generation star formation, within the first galaxy itself, and inside of minihalos that virialize after the supernova explosion. We find that most minihalos remain unscathed by ionizing radiation or the supernova remnant, while some are substantially photoheated and enriched to supercritical levels, likely resulting in the formation of low-mass Population III or even Population II stars. At the center of the newly formed galaxy, 10^5 M_sun of cold, dense gas uniformly enriched to 10^-3 Z_sun are in a state of collapse, suggesting that a cluster of Population II stars will form. The first galaxies, as may be detected by the James Webb Space Telescope, would therefore already contain stellar populations familiar from lower redshifts.Comment: 13 pages, 9 figures, published in Ap

    Population III star formation in a Lambda CDM universe, I: The effect of formation redshift and environment on protostellar accretion rate

    Get PDF
    (abridged) We perform 12 extremely high resolution adaptive mesh refinement cosmological hydrodynamic simulations of Population III star formation in a Lambda CDM universe, varying the box size and large-scale structure, to understand systematic effects in the formation of primordial protostellar cores. We find results that are qualitatively similar to those observed previously. We observe that the threshold halo mass for formation of a Population III protostar does not evolve significantly with time in the redshift range studied (33 > z > 19) but exhibits substantial scatter due to different halo assembly histories: Halos which assembled more slowly develop cooling cores at lower mass than those that assemble more rapidly, in agreement with Yoshida et al. (2003). We do, however, observe significant evolution in the accretion rates of Population III protostars with redshift, with objects that form later having higher maximum accretion rates, with a variation of two orders of magnitude (10^-4 - 10^-2 Msolar/year). This can be explained by considering the evolving virial properties of the halos with redshift and the physics of molecular hydrogen formation at low densities. Our result implies that the mass distribution of Population III stars inferred from their accretion rates may be broader than previously thought, and may evolve with redshift. Finally, we observe that our collapsing protostellar cloud cores do not fragment, consistent with previous results, which suggests that Population III stars which form in halos of mass 10^5 - 10^6 Msun always form in isolation.Comment: Accepted by The Astrophysical Journal. Some minor changes. 65 pages, 3 tables, 21 figures (3 color). To appear in January 1, 2007 issu

    Popular critiques of consultancy and a politics of management learning?

    Get PDF
    In this short article, I argue that popular business discourse on the role of management consultancy in the promotion and translation of management ideas is often critical, informed by more or less implicit ethical and political concerns with employee security, equity, openness and the transparency and legitimacy of responsibility. These concerns are, in part, ‘sayable’ because their object is seen as a scapegoat for management. Nevertheless, combined with the popular form of their expression, they can support and legitimize critical studies of management learning, a discipline which otherwise has become overly concerned with processual and situational phenomena at the expense of broader political dynamics and of the content and consequences of management and management knowledg

    Direct measurement of molecular stiffness and damping in confined water layers

    Get PDF
    We present {\em direct} and {\em linear} measurements of the normal stiffness and damping of a confined, few molecule thick water layer. The measurements were obtained by use of a small amplitude (0.36 A˚\textrm{\AA}), off-resonance Atomic Force Microscopy (AFM) technique. We measured stiffness and damping oscillations revealing up to 7 layers separated by 2.56 ±\pm 0.20 A˚\textrm{\AA}. Relaxation times could also be calculated and were found to indicate a significant slow-down of the dynamics of the system as the confining separation was reduced. We found that the dynamics of the system is determined not only by the interfacial pressure, but more significantly by solvation effects which depend on the exact separation of tip and surface. Thus ` solidification\rq seems to not be merely a result of pressure and confinement, but depends strongly on how commensurate the confining cavity is with the molecule size. We were able to model the results by starting from the simple assumption that the relaxation time depends linearly on the film stiffness.Comment: 7 pages, 6 figures, will be submitted to PR

    T2{}^2K2{}^2: The Twitter Top-K Keywords Benchmark

    Full text link
    Information retrieval from textual data focuses on the construction of vocabularies that contain weighted term tuples. Such vocabularies can then be exploited by various text analysis algorithms to extract new knowledge, e.g., top-k keywords, top-k documents, etc. Top-k keywords are casually used for various purposes, are often computed on-the-fly, and thus must be efficiently computed. To compare competing weighting schemes and database implementations, benchmarking is customary. To the best of our knowledge, no benchmark currently addresses these problems. Hence, in this paper, we present a top-k keywords benchmark, T2{}^2K2{}^2, which features a real tweet dataset and queries with various complexities and selectivities. T2{}^2K2{}^2 helps evaluate weighting schemes and database implementations in terms of computing performance. To illustrate T2{}^2K2{}^2's relevance and genericity, we successfully performed tests on the TF-IDF and Okapi BM25 weighting schemes, on one hand, and on different relational (Oracle, PostgreSQL) and document-oriented (MongoDB) database implementations, on the other hand

    Peer support for patients with type 2 diabetes: cluster randomised controlled trial

    Get PDF
    Objective To test the effectiveness of peer support for patients with type 2 diabetes

    Health system interventions to integrate genetic testing in routine oncology services: A systematic review

    Full text link
    Background Integration of genetic testing into routine oncology care could improve access to testing. This systematic review investigated interventions and the tailored implementation strategies aimed at increasing access to genetic counselling and testing and identifying hereditary cancer in oncology. Methods The search strategy results were reported using the PRISMA statement and four electronic databases were searched. Eligible studies included routine genetic testing for breast and ovarian cancer or uptake after universal tumour screening for colorectal or endometrial cancer. The titles and abstracts were reviewed and the full text articles screened for eligibility. Data extraction was preformed using a designed template and study appraisal was assessed using an adapted Newcastle Ottawa Scale. Extracted data were mapped to Proctor’s et al outcomes and the Consolidated Framework for Implementation Research and qualitatively synthesised. Results Twenty-seven studies, published up to May 2020, met the inclusion criteria. Twenty-five studies ranged from poor (72%), fair to good (28%) quality. Most interventions identified were complex (multiple components) such as; patient or health professional education, interdisciplinary practice and a documentation or system change. Forty-eight percent of studies with complex interventions demonstrated on average a 35% increase in access to genetic counselling and a 15% increase in testing completion. Mapping of study outcomes showed that 70% and 32% of the studies aligned with either the service and client or the implementation level outcome and 96% to the process or inner setting domains of the Consolidated Framework for Implementation Research. Conclusion Existing evidence suggests that complex interventions have a potentially positive effect towards genetic counselling and testing completion rates in oncology services. Studies of sound methodological quality that explore a greater breadth of pre and post implementation outcomes and informed by theory are needed. Such research could inform future service delivery models for the integration of genetics into oncology services

    Recent key developments in nanoscale reliability and failure analysis techniques for advanced nanoelectronics devices

    Get PDF
    Last decade has witnessed an aggressive scaling of CMOS technology nodes pushing it all the way down to sub-10nm and this scaling trend looks positive for the next two-three nodes as well down to 5nm. This push for scaling of the technology node has created a need for using material characterization techniques with (sub)nanometer probe resolution to characterize these advanced nanoelectronic devices - to observe and understand the underlying thermodynamics and kinetics of the physical phenomenon at the nanometer scale in real-time. Among these advanced characterization techniques, transmission election microscopy (TEM) and scanning probe microscopy (SPM), as well as the techniques derived from these, have become critical and instrumental to failure analysis and for evaluation of key design metrics for reliability studies. In this work, we present the different case studies using these two techniques which we have employed for studying both advanced logic and memory devices. High resolution TEM (HRTEM) has been used for both RRAM and gate oxide reliability studies due to its multiple compositional characterization capabilities with sub-nm resolution. TEM can routinely achieve a resolution around 0.1nm and thus can provide tremendous information related to structure (Diffraction Pattern) and composition (Electron Energy Loss Spectroscopy). Ex-situ TEM techniques (supported by Focused Ion Beam (FIB)) have allowed us to perform diverse electrical and thermal testing on devices. We have found concrete evidence of FinFET device degradation recently [1]. We have also employed in-situ TEM techniques (facilitated by scanning tunneling microscopy (STM) and the thermal holder) to observe the degradation behavior of metal-dielectric stacks in real-time [2]. The in-situ TEM technique has provided insight into the direct and solid time sequential evolution of failure behavior in RRAM devices. Additionally, 3D tomography characterization of the defect and failure spot has been acquired by tilting the sample and collecting the sequential images at different angles [3]. This technique of 3D tomography is a very powerful one for defect reorganization and for root cause analysis of failure mechanism. Conductive atomic force microscopy (CAFM) and STM are two techniques, belonging to a large pool of available SPM tools, which we have used for breakdown studies in ultra-thin HfO2 and other high-Îș dielectrics as well as multi-layered fluorinated graphene (FG) stacks. With a resolution, down to ~10nm and ~0.1nm for CAFM and STM respectively under ultra-high vacuum (UHV) conditions, we have applied these tools to measure electrical properties (I-V and dI/dV) at grain and grain boundary spots in ultra-thin polycrystalline HfO2 dielectrics [4] as well as to understand the breakdown mechanism in FG stacks [5]. We have also explored the local spectroscopy capabilities (of both STM and CAFM) for the measurement of random telegraph noise (RTN) in blanket HfO2 films. Using bias dependent RTN measurements, it has been possible to quantify the position of the defect in the probed location of the dielectric. Interestingly, these dielectric breakdowns and RTN measurements at the nanoscale have also provided experimental evidence of defect clustering in polycrystalline dielectrics and possible existence of the metastable nature of oxygen vacancy (VO) defect in HfO2 respectively [6]. CAFM has also been explored to study the role of VO in HfO2 based RRAM stacks for ultra-low power memory applications where the signature of sub-quantum conductance based resistive switching has been experimentally observed [7]. We strongly believe that these tools and techniques would play an indispensable role in unveiling the underlying physics of the nanoscale physical phenomenon for existing as well as emerging materials and 2D/3D devices. References: [1] S. Mei et al., IEDM (2016). [2] K. L. Pey et al., IRPS (2010). [3] S. Mei et al., Unpublished. [4] K. Shubhakar et al., Micro. Engineering (2013). [5] A. Ranjan et al., IRPS (2017, Accepted). [6] A. Ranjan et al., IRPS (2016
    • 

    corecore