Information retrieval from textual data focuses on the construction of
vocabularies that contain weighted term tuples. Such vocabularies can then be
exploited by various text analysis algorithms to extract new knowledge, e.g.,
top-k keywords, top-k documents, etc. Top-k keywords are casually used for
various purposes, are often computed on-the-fly, and thus must be efficiently
computed. To compare competing weighting schemes and database implementations,
benchmarking is customary. To the best of our knowledge, no benchmark currently
addresses these problems. Hence, in this paper, we present a top-k keywords
benchmark, T2K2, which features a real tweet dataset and queries with
various complexities and selectivities. T2K2 helps evaluate weighting
schemes and database implementations in terms of computing performance. To
illustrate T2K2's relevance and genericity, we successfully performed
tests on the TF-IDF and Okapi BM25 weighting schemes, on one hand, and on
different relational (Oracle, PostgreSQL) and document-oriented (MongoDB)
database implementations, on the other hand