research

T2{}^2K2{}^2: The Twitter Top-K Keywords Benchmark

Abstract

Information retrieval from textual data focuses on the construction of vocabularies that contain weighted term tuples. Such vocabularies can then be exploited by various text analysis algorithms to extract new knowledge, e.g., top-k keywords, top-k documents, etc. Top-k keywords are casually used for various purposes, are often computed on-the-fly, and thus must be efficiently computed. To compare competing weighting schemes and database implementations, benchmarking is customary. To the best of our knowledge, no benchmark currently addresses these problems. Hence, in this paper, we present a top-k keywords benchmark, T2{}^2K2{}^2, which features a real tweet dataset and queries with various complexities and selectivities. T2{}^2K2{}^2 helps evaluate weighting schemes and database implementations in terms of computing performance. To illustrate T2{}^2K2{}^2's relevance and genericity, we successfully performed tests on the TF-IDF and Okapi BM25 weighting schemes, on one hand, and on different relational (Oracle, PostgreSQL) and document-oriented (MongoDB) database implementations, on the other hand

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/11/2023