16 research outputs found
Post-Transcriptional Regulation of the GASC1 Oncogene with Active Tumor-Targeted siRNA-Nanoparticles
Screening Nylon‑3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery
Amphiphilic nucleic acid carriers
have attracted strong interest.
Three groups of nylon-3 copolymers (poly-β-peptides) possessing
different cationic/hydrophobic content were evaluated as siRNA delivery
agents in this study. Their ability to condense siRNA was determined
in SYBR Gold assays. Their cytotoxicity was tested by MTT assays,
their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly
in the presence and absence of uptake inhibitors was assessed by flow
cytometry, and their transfection efficacies were studied by luciferase
knockdown in a cell line stably expressing luciferase (H1299/Luc).
Endosomal release was determined by confocal laser scanning microscopy
and colocalization with lysotracker. All polymers efficiently condensed
siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected
in hydrodynamic diameters smaller than that at N/P 1. Although several
formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes
yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry.
Luciferase knockdown (20–65%) was observed after transfection
with polyplexes made of the high molecular weight polymers that were
the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA
intracellularly even at negative zeta potential implies that they
mediate transport across cell membranes based on their amphiphilicity.
The cellular uptake route was determined to strongly depend on the
presence of cholesterol in the cell membrane. These polymers are,
therefore, very promising for siRNA delivery at reduced surface charge
and toxicity. Our study identified nylon-3 formulations at low N/P
ratios for effective gene knockdown, indicating that nylon-3 polymers
are a new, promising type of gene delivery agent