1,831 research outputs found
Water in Comet 2/2003 K4 (LINEAR) with Spitzer
We present sensitive 5.5 to 7.6 micron spectra of comet C/2003 K4 (LINEAR)
obtained on 16 July 2004 (r_{h} = 1.760 AU, Delta_{Spitzer} = 1.409 AU, phase
angle 35.4 degrees) with the Spitzer Space Telescope. The nu_{2} vibrational
band of water is detected with a high signal-to-noise ratio (> 50). Model
fitting to the best spectrum yields a water ortho-to-para ratio of 2.47 +/-
0.27, which corresponds to a spin temperature of 28.5^{+6.5}_{-3.5} K. Spectra
acquired at different offset positions show that the rotational temperature
decreases with increasing distance from the nucleus, which is consistent with
evolution from thermal to fluorescence equilibrium. The inferred water
production rate is (2.43 +/- 0.25) \times 10^{29} molec. s^{-1}. The spectra do
not show any evidence for emission from PAHs and carbonate minerals, in
contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp).
However, residual emission is observed near 7.3 micron the origin of which
remains unidentified.Comment: 33 pages, including 11 figures, 2 tables, ApJ 2007 accepte
Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model
Nitrous oxide (N2O) is the main biogenic greenhouse gas contributing to the global warming potential
(GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate therefore requires a capacity
to predict N2O emissions in relation to environmental conditions and crop management. Biophysical
models simulating the dynamics of carbon and nitrogen in agro-ecosystems have a unique potential to
explore these relationships, but are fraught with high uncertainties in their parameters due to their
variations over time and space. Here, we used a Bayesian approach to calibrate the parameters of the N2O
submodel of the agro-ecosystem model CERES-EGC. The submodel simulates N2O emissions from the
nitrification and denitrification processes, which are modelled as the product of a potential rate with
three dimensionless factors related to soil water content, nitrogen content and temperature. These
equations involve a total set of 15 parameters, four of which are site-specific and should be measured on
site, while the other 11 are considered global, i.e. invariant over time and space. We first gathered prior
information on the model parameters based on the literature review, and assigned them uniform
probability distributions. A Bayesian method based on the Metropolis–Hastings algorithm was
subsequently developed to update the parameter distributions against a database of seven different
field-sites in France. Three parallel Markov chains were run to ensure a convergence of the algorithm.
This site-specific calibration significantly reduced the spread in parameter distribution, and the
uncertainty in the N2O simulations. The model’s root mean square error (RMSE) was also abated by 73%
across the field sites compared to the prior parameterization. The Bayesian calibration was subsequently
applied simultaneously to all data sets, to obtain better global estimates for the parameters initially
deemed universal. This made it possible to reduce the RMSE by 33% on average, compared to the
uncalibrated model. These global parameter values may be used to obtain more realistic estimates of
N2O emissions from arable soils at regional or continental scales
The chemical diversity of comets
A fundamental question in cometary science is whether the different dynamical
classes of comets have different chemical compositions, which would reflect
different initial conditions. From the ground or Earth orbit, radio and
infrared spectroscopic observations of a now significant sample of comets
indeed reveal deep differences in the relative abundances of cometary ices.
However, no obvious correlation with dynamical classes is found. Further
results come, or are expected, from space exploration. Such investigations, by
nature limited to a small number of objects, are unfortunately focussed on
short-period comets (mainly Jupiter-family). But these in situ studies provide
"ground truth" for remote sensing. We discuss the chemical differences in
comets from our database of spectroscopic radio observations, which has been
recently enriched by several Jupiter-family and Halley-type comets.Comment: In press in Earth, Moon and Planets (proceedings of the workshop
"Future Ground-based Solar System Research: Synergies with Space Probes and
Space Telescopes", Portoferraio, Isola d'Elba, Livorno (Italy), 8-12
September 2008). 6 pages with 2 figure
Evaluation of advanced receiver autonomous integrity monitoring performance on predicted aircraft trajectories
The development of new GNSS constellations, and the modernization of existing ones, has increased the availability and the number of satellites-in-view, paving the way for new navigation algorithms and techniques. These offer the opportunity to improve the navigation performance while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS). These enhanced future capabilities can enable GNSS receivers to serve as a primary means of navigation, worldwide, and have provided the motivation for the Federal Aviation Administration (FAA) to form the GNSS Evolution Architecture Study (GEAS). This panel, formed in 2008, investigates the new GNSS-based architectures, with a focus on precision approach down to LPV-200 operations. GEAS identified ARAIM as the most promising system. The literature, produced through a series of studies, has analysed the performance of this new technique and has clearly shown that the potential of ARAIM architectures to provide the Required Navigation Performance for LPV 200. Almost all of the analysis was performed by simply studying a constellation’s configuration with respect to fixed points on a grid on the Earth’s surface, with full view of the sky, evaluating ARAIM performance from a geometrical point of view and using nominal performance in simulated scenarios lasting several days
In this paper, we will evaluate the ARAIM performance in simulated operational configurations. Aircraft flights can last for hours and on-board receivers don’t always have a full view of the sky. Attitude changes from manoeuvers, obscuration by the aircraft body and shadowing from the surrounding environment could all affect the incoming signal from the GNSS constellations, leading to configurations that could adversely affect the real performance. For this reason, the main objective of the algorithm developed in this research project is to analyse these shadowing effects and compute the performance of the ARAIM technique when integrated with a predicted flight path using different combinations of three constellations (GPS, GLONASS and Galileo), considered as fully operational
A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models
In recent years, advances in computational power and spatial data analysis
(GIS, remote sensing, etc) have led to an increase in attempts to model the
spread and behaviour of wildland fires across the landscape. This series of
review papers endeavours to critically and comprehensively review all types of
surface fire spread models developed since 1990. This paper reviews models of a
physical or quasi-physical nature. These models are based on the fundamental
chemistry and/or physics of combustion and fire spread. Other papers in the
series review models of an empirical or quasi-empirical nature, and
mathematical analogues and simulation models. Many models are extensions or
refinements of models developed before 1990. Where this is the case, these
models are also discussed but much less comprehensively.Comment: 31 pages + 8 pages references + 2 figures + 5 tables. Submitted to
International Journal of Wildland Fir
An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI
176P/LINEAR is a member of the new cometary class known as main-belt comets
(MBCs). It displayed cometary activity shortly during its 2005 perihelion
passage that may be driven by the sublimation of sub-surface ices. We have
therefore searched for emission of the H2O 110-101 ground state rotational line
at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far
Infrared (HIFI) on board the Herschel Space Observatory on UT 8.78 August 2011,
about 40 days after its most recent perihelion passage, when the object was at
a heliocentric distance of 2.58 AU. No H2O line emission was detected in our
observations, from which we derive sensitive 3-sigma upper limits for the water
production rate and column density of < 4e25 molec/s and of < 3e10 cm^{-2},
respectively. From the peak brightness measured during the object's active
period in 2005, this upper limit is lower than predicted by the relation
between production rates and visual magnitudes observed for a sample of comets
by Jorda et al. (2008) at this heliocentric distance. Thus, 176P/LINEAR was
likely less active at the time of our observation than during its previous
perihelion passage. The retrieved upper limit is lower than most values derived
for the H2O production rate from the spectroscopic search for CN emission in
MBCs.Comment: 5 pages, 2 figures. Minor changes to match published versio
Examples of user algorithms implementing ARAIM techniques for integrity performance prediction, procedures development and pre-flight operations
Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a new Aircraft Based Augmentation System (ABAS) technique, firstly presented in the two reports of the GNSS Evolutionary Architecture Study (GEAS). The ARAIM technique offers the opportunity to enable GNSS receivers to serve as a primary means of navigation, worldwide, for precision approach down to LPV-200 operation, while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS)
Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the Herschel space observatory
HCl and HF are expected to be the main reservoirs of fluorine and chlorine
wherever hydrogen is predominantly molecular. They are found to be strongly
depleted in dense molecular clouds, suggesting freeze-out onto grains in such
cold environments. We can then expect that HCl and HF were also the major
carriers of Cl and F in the gas and icy phases of the outer solar nebula, and
were incorporated into comets. We aimed to measure the HCl and HF abundances in
cometary ices as they can provide insights on the halogen chemistry in the
early solar nebula. We searched for the J(1-0) lines of HCl and HF at 626 and
1232 GHz, respectively, using the HIFI instrument on board the Herschel Space
Observatory. HCl was searched for in comets 103P/Hartley 2 and C/2009 P1
(Garradd), whereas observations of HF were conducted in comet C/2009 P1. In
addition, observations of HO and HO lines were performed in C/2009
P1 to measure the HO production rate. Three lines of CHOH were
serendipitously observed in the HCl receiver setting. HCl is not detected,
whereas a marginal (3.6-) detection of HF is obtained. The upper limits
for the HCl abundance relative to water are 0.011% and 0.022%, for 103P and
C/2009 P1, respectively, showing that HCl is depleted with respect to the solar
Cl/O abundance by a factor more than 6 in 103P, where the error is
related to the uncertainty in the chlorine solar abundance. The marginal HF
detection obtained in C/2009 P1 corresponds to an HF abundance relative to
water of (1.80.5) 10, which is approximately consistent
with a solar photospheric F/O abundance. The observed depletion of HCl suggests
that HCl was not the main reservoir of chlorine in the regions of the solar
nebula where these comets formed. HF was possibly the main fluorine compound in
the gas phase of the outer solar nebula.Comment: Accepted for publication in Astronomy & Astrophysic
- …
