431 research outputs found
The role of diabetes in low back pain compared to non-diabetics
Background: Type 2 diabetes is a prevalent non-communicable disease, affecting significant proportion of the global population, with an estimated 382 million individuals affected. There exists a correlation among diabetes and low back pain. The objective of this investigation was to examine the potential association linking diabetes and low back pain by utilising the Oswestry disability Index as a gauge of the intensity of persistent lower back pain.
Methods: The study was conducted by cross sectional method in which 200 patients with low back pain were included from period of October 2020 to September 2022. Oswestry disability index questionnaire was used for the intensity of lower back pain. Statistical package for the social sciences was used for data analysis.
Results: In this study, out of 200 patients, 59 (29.5%) had diabetes and 141 (70.5%) were without diabetes, with a average age of 53.61±15.07 years. Overall, according to gender, patients were equally distributed, while female and male predominance was seen in diabetics and non-diabetics, respectively.
Conclusions: The distribution of patients as per gender and ODI score did not differ, although more diabetics had a significantly higher ODI score than non-diabetics. A significant increase in blood glucose, HbA1c, microalbuminuria, and ODI score was noted in diabetics compared with non-diabetics, with significant positive associations of ODI with age, blood glucose, and HbA1c. The increased levels of the diabetic profile parameters and their association with the ODI indicate the possible role of diabetes with low back pain
A polynomial-time algorithm for optimizing over N-fold 4-block decomposable integer programs
In this paper we generalize N-fold integer programs and two-stage integer
programs with N scenarios to N-fold 4-block decomposable integer programs. We
show that for fixed blocks but variable N, these integer programs are
polynomial-time solvable for any linear objective. Moreover, we present a
polynomial-time computable optimality certificate for the case of fixed blocks,
variable N and any convex separable objective function. We conclude with two
sample applications, stochastic integer programs with second-order dominance
constraints and stochastic integer multi-commodity flows, which (for fixed
blocks) can be solved in polynomial time in the number of scenarios and
commodities and in the binary encoding length of the input data. In the proof
of our main theorem we combine several non-trivial constructions from the
theory of Graver bases. We are confident that our approach paves the way for
further extensions
Business process modelling and visualisation to support e-government decision making: Business/IS alignment
© 2017 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/978-3-319-57487-5_4.Alignment between business and information systems plays a vital role in the formation of dependent relationships between different departments in a government organization and the process of alignment can be improved by developing an information system (IS) according to the stakeholdersâ expectations. However, establishing strong alignment in the context of the eGovernment environment can be difficult. It is widely accepted that business processes in the government environment plays a pivotal role in capturing the details of IS requirements. This paper presents a method of business process modelling through UML which can help to visualise and capture the IS requirements for the system development. A series of UML models have been developed and discussed. A case study on patient visits to a healthcare clinic in the context of eGovernment has been used to validate the models
Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo
Background: Pseudomonas species are adapted to evade innate immune responses and can persist at sites of relative tissue hypoxia, including the mucus-plugged airways of patients with cystic fibrosis and bronchiectasis. The ability of these bacteria to directly sense and respond to changes in local oxygen availability is in part consequent upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is homologous with the human hypoxia inducible factor (HIF) prolyl hydroxylases. We report that PPHD expression regulates the neutrophil response to acute pseudomonal infection. Methods: In vitro co-culture experiments were performed with human neutrophils and PPHD-deficient and wild-type bacteria and supernatants, with viable neutrophil counts determined by flow cytometry. In vivo consequences of infection with PPHD deficient P. aeruginosa were determined in an acute pneumonia mouse model following intra-tracheal challenge. Results: Supernatants of PPHD-deficient bacterial cultures contained higher concentrations of the phenazine exotoxin pyocyanin and induced greater acceleration of neutrophil apoptosis than wild-type PAO1 supernatants in vitro. In vivo infection with PPHD mutants compared to wild-type PAO1 controls resulted in increased levels of neutrophil apoptosis and impaired control of infection, with higher numbers of P. aeruginosa recovered from the lungs of mice infected with the PPHD-deficient strain. This resulted in an overall increase in mortality in mice infected with the PPHD-deficient strain. Conclusions: Our data show that Pseudomonas expression of its prolyl hydroxylase influences the outcome of host-pathogen interactions in vitro and in vivo, demonstrating the importance of considering how both host and pathogen adaptations to hypoxia together define outcomes of infection. Given that inhibitors for the HIF prolyl hydroxylases are in late stage trials for the treatment of anaemia and that the active sites of PPHD and human HIF prolyl hydroxylases are closely related, the results are of current clinical interest
Negotiating networks of self-employed work: strategies of minority ethnic contractors
Within the increased flexible, contracted work in cities, employment is negotiated through network arrangements characterised by multiplicity, mobility and fluidity. For black and minority ethnic group members, this network labour becomes fraught as they negotiate both their own communities, which can be complex systems of conflicting networks, as well as non-BME networks which can be exclusionary. This discussion explores the networking experiences of BME individuals who are self-employed in portfolio work arrangements in Canada. The analysis draws from a theoretical frame of âracialisationâ (Mirchandani and Chan, 2007) to examine the social processes of continually constructing and positioning the Other as well as the self through representations in these networks. These positions and concomitant identities enroll BME workers in particular modes of social production, which order their roles and movement in the changing dynamics of material production in networked employment
Maximum gradient embeddings and monotone clustering
Let (X,d_X) be an n-point metric space. We show that there exists a
distribution D over non-contractive embeddings into trees f:X-->T such that for
every x in X, the expectation with respect to D of the maximum over y in X of
the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a
universal constant. Conversely we show that the above quadratic dependence on
log n cannot be improved in general. Such embeddings, which we call maximum
gradient embeddings, yield a framework for the design of approximation
algorithms for a wide range of clustering problems with monotone costs,
including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous
one. To appear in "Combinatorica
MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion
Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity
IL4Rα signaling abrogates hypoxic neutrophil survival and limits acute lung injury responses <i>in vivo</i>
Rationale: Acute respiratory distress syndrome is defined by the presence of systemic hypoxia and consequent on disordered neutrophilic inflammation. Local mechanisms limiting the duration and magnitude of this neutrophilic response remain poorly understood. Objectives: To test the hypothesis that during acute lung inflammation tissue production of proresolution type 2 cytokines (IL-4 and IL-13) dampens the proinflammatory effects of hypoxia through suppression of HIF-1a (hypoxia-inducible factor-1a)mediated neutrophil adaptation, resulting in resolution of lung injury. Methods: Neutrophil activation of IL4Ra (IL-4 receptor a) signaling pathways was explored ex vivo in human acute respiratory distress syndrome patient samples, in vitro after the culture of human peripheral blood neutrophils with recombinant IL-4 under conditions of hypoxia, and in vivo through the study of IL4Ra-deficient neutrophils in competitive chimera models and wild-type mice treated with IL-4. Measurements and Main Results: IL-4 was elevated in human BAL from patients with acute respiratory distress syndrome, and its receptor was identified on patient blood neutrophils. Treatment of human neutrophils with IL-4 suppressed HIF-1a-dependent hypoxic survival and limited proinflammatory transcriptional responses. Increased neutrophil apoptosis in hypoxia, also observed with IL-13, required active STAT signaling, and was dependent on expression of the oxygen-sensing prolyl hydroxylase PHD2. In vivo, IL-4Ra-deficient neutrophils had a survival advantage within a hypoxic inflamed niche; in contrast, inflamed lung treatment with IL-4 accelerated resolution through increased neutrophil apoptosis. Conclusions: We describe an important interaction whereby IL4Ra-dependent type 2 cytokine signaling can directly inhibit hypoxic neutrophil survival in tissues and promote resolution of neutrophil-mediated acute lung injury
Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism
Limiting dysfunctional neutrophilic inflammation while preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks, and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labeled amino acids into metabolic enzymes, proinflammatory mediators, and granule proteins, we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycemia, characteristic of inflamed tissues, promoted this extracellular protein scavenging with activation of the lysosomal compartment, further driving exploitation of the protein-rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways that enable neutrophils to sustain synthetic and effector functions in the tissues
- âŠ