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Impact

These studies demonstrate for the first time that IL-4 directly regulates neutrophil 

hypoxic survival in-vitro and in-vivo, supporting its role in inflammation resolution. Our 

findings are key to conditions such as Acute Respiratory Distress Syndrome in which 

hypoxia, neutrophilic inflammation and IL-4 co-exist, as our work identifies this axis 
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as an attractive therapeutic target which could be manipulated to drive inflammation 

resolution.

At a glance commentary

The role for type 2 cytokines such as IL-4 and IL-13 in inflammation resolution has 

been extensively studied but their precise effect on neutrophils in this context 

remains largely unknown. Neutrophils are key innate cells adapted to working under 

severe hypoxic conditions, an environment which drives their survival. Such 

conditions are found in the lungs of Acute Respiratory Distress Syndrome patients 

(ARDS). In this article we identify a significant role for both IL-4 (and IL-13) as 

regulators of neutrophil hypoxic survival in both human and mouse cells using a 

combination of in vitro and in vivo studies. We demonstrate that IL-4 is present in the 

lungs of ARDS sufferers and in mouse models of lung injury. Furthermore, IL-4 

abrogates neutrophil hypoxic survival in vitro in human and mouse neutrophils in a 

prolyl-hydroxylase 2-dependent manner. Finally, through the careful use of animal 

models, including chimera studies we demonstrate the therapeutic potential of 

manipulating this pathway in the lung during hypoxic neutrophilic lung inflammation. 
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Abstract 

Rationale: Acute respiratory distress syndrome (ARDS) is defined by the presence 

of systemic hypoxia and consequent upon disordered neutrophilic inflammation.  

Local mechanisms limiting the duration and magnitude of this neutrophilic response 

remain poorly understood.  Objectives: We aimed to test the hypothesis that during 

acute lung inflammation tissue production of pro-resolution type 2 cytokines (IL-4 

and IL-13) dampens the pro-inflammatory effects of hypoxia through suppression of 

Hypoxia Inducible Factor (HIF-1)-mediated neutrophil adaptation, resulting in 

resolution of lung injury.  Methods:  Neutrophil activation of IL4Ra signaling 

pathways was explored ex vivo in human ARDS patient samples, in vitro following 

the culture of human peripheral blood neutrophils with recombinant IL-4 under 

conditions of hypoxia, and in vivo, through the study of IL4Ra deficient neutrophils in 

competitive chimera models and wild-type mice treated with IL-4. Measurements 

and Main Results: IL-4 was elevated in human bronchoalveolar lavage from ARDS 

patients and its receptor was identified on inflamed lung neutrophils. Treatment of 

human neutrophils with IL-4 suppressed HIF-1α dependent hypoxic survival and 

limited pro-inflammatory transcriptional responses. Increased neutrophil apoptosis in 

hypoxia, also observed with IL-13, required active STAT signaling, and was 

dependent upon expression of the oxygen sensing prolyl hydroxylase PHD2. In vivo, 

IL-4Ra-deficient neutrophils had a survival advantage within a hypoxic inflamed 

niche, in contrast inflamed lung treatment with IL-4 accelerated resolution through 

increased neutrophil apoptosis. Conclusions: We describe an important interaction 

whereby IL4Rα-dependent type 2 cytokine signaling can directly inhibit hypoxic 

neutrophil survival in tissues and promote resolution of neutrophil mediated acute 

lung injury.
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Introduction

Acute respiratory distress syndrome (ARDS) is a clinical syndrome defined by the 

presence of bilateral pulmonary infiltrates and arterial hypoxaemia.  Although a 

number of causes are recognized including sepsis, trauma and aspiration, ARDS is 

the consequence of a disordered inflammatory response in which accumulation of 

activated neutrophils within the lung interstitium and distal airspaces is associated 

with lung endothelial and epithelial injury.  A fine balance therefore exists between 

an effective innate response that enables host pathogen control and a disordered 

one in which inappropriate neutrophil persistence and activation drives tissue injury.  

Production of local factors during the course of an inflammatory response together 

with changes in the physiological environment, are crucial in regulating this balance.

Hypoxia frequently characterizes acute inflammatory sites 1 and is an important 

mediator of neutrophil survival and inflammatory function 2. In human disease states, 

hypoxia has been associated with elevated neutrophil numbers, reduced neutrophil 

apoptosis and increased disease severity 3, 4, 5, 6.   Thus hypoxia can be regarded 

as a pro-inflammatory stimulus that facilitates the persistence of neutrophils at  

inflamed sites.  

In vivo models have shown that enhanced neutrophil survival in hypoxia is 

dominantly mediated by stabilization of the transcription factor HIF-1α 7-9. HIF-1α 

itself is regulated by a family of dioxygenases including the prolyl hydroxylase 

domain containing enzymes (PHD1-3) and factor inhibiting HIF (FIH) 10. Other 

studies have delineated oxygen-independent regulation of the HIF pathway, with 

bacterial activation of TLR signaling pathways leading to HIF-1α stabilization 11,12. 
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The interaction between hypoxia and local factors in regulating HIF-1α signaling, and 

the consequences for inflammatory responses, are therefore of great interest. IL-4 

has long been considered an important cytokine for tissue repair, counterbalancing 

the effects of pro-inflammatory type 1 cytokines on the macrophage compartment on 

the one hand 13, but conversely for promoting allergic airway inflammation on the 

other. Interestingly, mouse neutrophils express both IL4Rα and IL13Rα 14, the 

components of the type 2 IL-4 receptor complex, through which both IL-4 and IL-13 

signal. IL4Rα is upregulated in myeloid cells following stimulation with pro-

inflammatory mediators, including lipopolysaccharide (LPS), with neutrophils 

displaying the highest fold increase in receptor expression 15. Moreover, IL-4 is itself 

released by macrophages following LPS simulation during the acute response 16. 

With cell specific consequences of IL-4 signaling, we questioned whether IL-4 could 

regulate neutrophilic inflammation during acute lung inflammation to promote 

inflammation resolution and restoration of tissue homeostasis. We provide evidence 

of activation of IL-4 pathways in the setting of acute lung injury and demonstrate that 

IL-4 prevents neutrophil hypoxic HIF-1α induction, abrogates hypoxic survival of 

human and mouse neutrophils, dampens pro-inflammatory cytokine expression and 

promotes resolution of neutrophilic inflammation in vivo.

Methods

Blood donors for isolation of human peripheral blood neutrophils

Participants were consented in accordance with the Declaration of Helsinki 

principles, with AMREC approval for study of healthy human volunteers through the 

Page 7 of 48  AJRCCM Articles in Press. Published on 08-March-2019 as 10.1164/rccm.201808-1599OC 

 Copyright © 2019 by the American Thoracic Society 



IL-4 limits neutrophilic responses in hypoxia

5

MRC / University of Edinburgh Centre for Inflammation Research blood resource 

(15-HV-013). 

ARDS patient samples

Bronchoalveolar lavage (BAL) samples were studied from patients recruited to the 

HARP study (06/NIR02/77) and healthy controls undergoing research bronchoscopy 

(12/NI/0082), see supplementary methods. 

Animals

Il4ra-/- mice on a C57BL/6 background were generated by Dr Frank Brombacher 

following backcross of the BALB/Il4ra-/- strain (minimum 9 generations) 17 and a gift 

from Dr Cecile Benezech. Animal experiments were conducted in accordance with 

the UK Home Office Animals (Scientific Procedures) Act of 1986 with local ethical 

approval.

Human neutrophil isolation and culture

Human blood neutrophils, isolated by dextran sedimentation and discontinuous 

Percoll gradients, were cultured (5 million cells/ml) in normoxia (21% O2, 5% CO2) or 

hypoxia (1% (3kPa) O2, 5% CO2)  recombinant human IL-4 (10ng/ml), IL-13 

(100ng/ml) or IFNγ (100ng/ml) (Peprotech), LPS (100ng/ml)( R515 (Enzo), IL4Rα 

(polyclonal blocking antibody, R&D Systems), STAT3 (200nM 5,15-DPP, Sigma), or 

STAT6 (20nM AS 1517499, Axon Medchem).

Murine neutrophil culture
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Inflammatory neutrophils isolated by bronchoalveolar lavage (BAL) 24 hours post 

LPS challenge were cultured at 2 million cells/ml as detailed above.

Chimera Studies

To dissect the consequence of IL4Ra loss on bone marrow and circulating neutrophil 

populations in the context of hypoxia we used an organ protected chimeric approach 

in the liver (regional hypoxia) and a fractionated radiation strategy in the lung 

(systemic hypoxia).  Inflammation outcomes were defined in a model of acute liver 

injury (CCl4) and acute lung injury (LPS), see supplementary methods. 

IL4c experiment

50μl IL4c (250μg/ml recombinant murine IL-4 (Peprotech):1250μg/ml anti-mouse IL-

4 (clone 11b11, Bio X Cell)) or PBS vehicle control was administered intratracheally 

6 hours post LPS-nebulization and mice transferred to hypoxia.

Statistical analysis

 For non-parametric data significance was determined by Mann-Whitney.  Data 

shown as individual points with median and interquartile range values.  For multiple 

comparisons with one variable we used one way ANOVAs with Kruskal-Wallis post 

test and for two variables, two-way ANOVAs with Holm-Sidak post test analysis and 

adjustment for multiplicity of tests.  Data shown as mean +/- SEM.  P<0.05 was 

considered significant.  Individual data points represent individual mice or human 

samples.

 

Results
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IL-4 receptor α signaling pathways are present in the airways of patients with 

ARDS, circulating neutrophils and in a mouse model of ARDS

To determine whether patients with ARDS have evidence of local production of IL-4, 

we measured IL-4 levels in bronchoalveolar lavage (BAL) samples of ARDS patients 

compared to healthy controls.  ARDS BAL fluid contained significantly more IL-4 than 

lavage samples obtained from healthy airspaces (Figure 1A). Interestingly, 

preliminary data suggest that neutrophils from patients with ARDS may have higher 

levels of IL4Ra expression than healthy controls (Figure 1B) supporting the 

relevance of this pathway to ARDS.

To confirm the ability of circulating neutrophils to respond to IL-4 in the context of 

physiological hypoxia, we examined neutrophil expression of IL4Rα. Healthy human 

blood neutrophils demonstrated IL4Rα surface protein expression and transcript 

when cultured in normoxia (21% O2) and hypoxia (1% O2), with loss of surface 

protein and induction of mRNA following stimulation with IL-4 (Figure 1C, D). 

In order to determine if the IL-4 pathway is activated in an acute lung injury (ALI) 

mouse model we examined IL-4 BAL levels from mice exposed to nebulized 

lipopolysaccharide (LPS). In keeping with the data from human ARDS BAL, IL-4 is 

produced in the airspace of mice exposed to LPS (Figure 1E). We then determined if 

systemic hypoxia (10% FiO2) altered the neutrophil inflammatory responses in vivo 

and found that in-vivo lung neutrophils express the IL4Ra, more so in hypoxia than in 

normoxia, following LPS (Figure1F). In this setting alveolar macrophages also 

upregulate their IL4Ra expression in hypoxia following LPS stimulation (Figure 1G) 

but T cells do not (Figure 1H). Importantly, BAL inflammatory neutrophils cultured ex-
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vivo in hypoxia with IL-4 had reduced hypoxic survival thus suggesting IL-4 can 

overcome the enhanced neutrophil survival observed in physiological and 

pathophysiological hypoxia  (Figure 1I).

IL-4 abrogates neutrophil hypoxic survival and suppresses pro-inflammatory 

responses 

We next sought to determine whether IL-4 modified human neutrophil apoptosis in-

vitro. In marked contrast to the pro-survival effects of IFN/LPS, IL-4 had no effect on 

constitutive apoptosis in normoxia, but inhibited hypoxic survival at both early (6 

hour) (Figure 2A) and late (20 hour) (Figure 2B) time points, as determined by 

morphological appearance (chromatin condensation and loss of characteristic lobes 

and bridges). Culture with IL-13, which also signals through IL4Rα, similarly resulted 

in loss of hypoxic neutrophil survival (Figure 2C). Abrogation of hypoxic survival by 

IL-4 (Figure 2D, F) and IL-13 (Figure 2E, F) was further validated by flow cytometry. 

We confirmed that these effects were IL4Rα-dependent using an IL4Rα blocking 

antibody, which restored hypoxic survival in the presence of IL-4 and IL-13 (Figure 

2G, H). Abrogation of enhanced neutrophil survival was not confined to hypoxic 

responses, with IL-4 and IL-13 also partially reversing increased survival following 

LPS stimulation (Figure 2I). In addition to its effects on neutrophil hypoxic survival, 

IL-4 suppressed LPS-induced expression of the pro-inflammatory genes CCL2, 

CCL3, TNF and IL1B, previously linked to HIF-1 α activity (Figure 2J) 18. Conversely, 

IL-4 induced CCL17 (Figure 2K), a chemokine associated with Treg recruitment, M2-

polarised macrophages and tumor-associated neutrophils 19-22. IL-4 did not influence 

baseline reactive oxidative species (ROS) production or neutrophil respiratory burst 
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following stimulation with N-formyl-met-leu-phe (fMLP) under normoxic or hypoxic 

conditions (Figure 2L).

IL-4 suppresses hypoxic induction of NF-κB protein despite preserved 

metabolic capacity

Given that hypoxia upregulates glycolysis 2 and IL-4 has been shown to affect 

macrophage metabolism 23 we sought to determine whether the effects of IL-4 on 

neutrophil survival were through alteration of metabolic pathways. GAPDH, PKM, 

PGK1 and PFKFB3 levels were however, unaltered following IL-4 treatment in-vitro 

(Figure 3A). Although a modest decrease in glucose uptake was observed with IL-4 

(Supplementary Figure 1A), overall neutrophil glycolytic capacity was preserved 

(Figure 3B), in contrast to the described effects in macrophages 23. 

In macrophages, polarization of phenotypic states has been linked to metabolic 

rewiring, with IL-4 favoring fatty acid oxidation 23. IL-4 did not affect neutrophil 

expression of PPARGC1B, a key regulator of -oxidation (Supplementary Figure 1B) 

or flux through fatty acid oxidation (Figure 3B). Overall energy status (ATP/ADP 

ratio) was also not modified by IL-4 (Figure 3B), suggesting that altered metabolism 

and/or a lack of ATP are not responsible for the reduction in in-vitro neutrophil 

survival.

We have previously shown NF-κB upregulation to be critical for enhanced neutrophil 

survival under hypoxic conditions 8. Hif1a-/- neutrophils have reduced expression of 

the NF-κB subunit Rela and of Ikka, a kinase that targets the NF-κB inhibitor IκB for 

degradation. We found that IL-4 diminished NF-κB RelA protein expression under 
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hypoxic conditions (Figure 3C). However, this regulation occurred at a post-

transcriptional level, with the relative expression of RELA and CHUK (IKKα) mRNA 

unchanged by stimulation with IL-4 in the setting of hypoxia (Figure 3D).

IL-4-induced STAT signaling leads to loss of hypoxic survival by induction of 

PHD2 and degradation of HIF1α protein

Previous studies have linked IL-4 signaling through IL4Rα to activation of STAT6 

pathways and protection in inflammatory models of arthritis 24,25. In macrophages, 

STAT3 and STAT6 are important mediators of IL-4 and IL-13 signaling through both 

the IL4Rα/γc and IL4Rα/IL13Rα 26.  In-vitro pre-incubation with either the STAT3 

inhibitor 5,15-DPP or the STAT6 inhibitor AS1517499 was sufficient to rescue 

hypoxia-induced survival in the presence of IL-4 or IL-13 (Figure 4A, B), suggesting 

both STAT3 and STAT6 are required for IL-4 to modulate neutrophil survival. Neither 

5,15-DPP nor AS1517499 affected hypoxic neutrophil survival in the absence of 

exogenous cytokine stimulation (Supplementary Figure 2A).

STAT6-mediated enhancement of PPAR activity 27 and STAT3/6-mediated 

induction of transcripts for both PPARG and ALOX15 (encoding an enzyme that 

catalyses production of endogenous PPARγ agonist) has previously been observed 

with IL-4 stimulation in macrophages 26.  In contrast to macrophages, neutrophil 

ALOX15 transcript was downregulated by hypoxia and unaffected by IL-4 (Figure 

4C), but PPARG transcript was strongly upregulated by IL-4 in both normoxia and 

hypoxia (Figure 4D). PPARγ has been shown to induce gene expression of a 

“master regulator” of apoptosis, DNA damage inducible transcript 3 (DDIT3) 28,29. 

Whilst IL-4 had an effect on DDIT3 expression, this was only in addition to the effect 
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seen in hypoxia (Figure 4E). PPARγ has also been directly linked to increases in 

PHD transcript and protein abundance during adipocyte differentiation 30.  We 

questioned whether IL-4 stimulation in-vitro could lead to a paradoxical increase in 

PHD activity and thereby suppress HIF. We observed that IL-4 selectively induced 

PHD2 (Figure 4F), but not PHD1 or PHD3 transcript (Supplementary Figure 2B). 

Neither hypoxic conditions nor IL-4 affected neutrophil HIF1A transcript (Figure 4G). 

However, in keeping with PHD-mediated degradation of HIF-1, IL-4 dramatically 

reduced hypoxic stabilization of HIF1α protein (Figure 4H). To directly address the 

role of PHD2 in the IL-4 response, airspace neutrophils from mice deficient in 

myeloid PHD2 were isolated. PHD2 deficient neutrophils treated with IL-4 displayed 

preserved hypoxic survival confirming that PHD2 expression is essential for the IL-4-

induced effects on neutrophil hypoxic survival (Figure 4I).

An overview of our proposed mechanism for IL-4/IL-13-mediated reduction in 

hypoxic survival is shown in Figure 4J.

Direct IL-4 signaling reduces neutrophil survival in damaged liver

To address whether IL4Rα-deficient neutrophils have an intrinsic survival advantage 

in vivo, we created liver-protected competitive bone marrow-chimeras.  Recipient 

Cd45.2+/- Cd45.1+/- wild type (WT) mice were partially depleted of host bone marrow 

by hind-leg irradiation to retain resident liver immune cell populations, before 

receiving Cd45.2+/+ Cd45.1-/- Il4rα-/- (Il4ra-/-) or Cd45.2+/+ Cd45.1-/- Il4rα+/+ (WT) bone 

marrow (Figure 5A). We used a CCl4-mediated acute liver injury model that causes 

hypoxic zone 3 hepatocytes to preferentially undergo necrosis 31 leading to 

neutrophil recruitment 32.   We also investigated the role of exogenous IL-4 in 
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neutrophil survival in this system. Whilst the percentage of blood neutrophils derived 

from donor CD45.1- bone marrow prior to injury (Figure 5B), was marginally greater 

in mice that received Il4ra-/- cells compared to those that received WT (Figure 5C), 

chimerism in blood neutrophils at day 3 remained unchanged irrespective of 

treatment, demonstrating no additional competitive neutrophil survival advantage to 

IL4Rα expression in blood neutrophils post treatment (Figure 5D). Liver neutrophil 

chimerism was equivalent to blood chimerism in all groups except in CCl4-injured 

mice treated with IL4c, in which Il4ra-/- donor neutrophils displayed a significant 

advantage compared to their WT counterparts (Figure 5E). This change in chimerism 

was due to an increased number of donor Il4rα-/- neutrophils in the liver of CCl4 + 

IL4c-treated mice (Fig. 5F), rather than a decrease in host WT cells (Figure 5G), 

thereby confirming the competitive advantage conferred on Il4rα-/- tissue neutrophils 

when present in a necrotic environment permeated by IL-4.

IL4Rα-deficient neutrophils demonstrate a selective advantage in an LPS-

induced lung inflammation model with systemic hypoxia 

Having observed a competitive advantage for Il4ra-/- neutrophils in a liver injury 

model in the presence of exogenous IL-4, we questioned whether endogenous 

cytokine could be sufficient to drive a selective advantage for IL4R-deficient 

neutrophils in-vivo in the setting of systemic hypoxia combined with an LPS 

challenge. In keeping with previous reports of IL-4 release following LPS 33,34 (Figure 

1F), we also observe IL-4 release in the setting of hypoxia in our ALI model (Figure 

6A). Competitive chimeras were generated to determine if a survival advantage was 

conferred by neutrophil IL4R-deficiency in this model of ALI.  Cd45.2+/- Cd45.1+/- 

WT recipient mice were fractionally irradiated to deplete endogenous bone marrow 
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cells 35 but protect lung alveolar macrophages (Supplementary Figure 3A).  The mice 

were subsequently reconstituted with a 50:50 mix of Cd45.2+/- Cd45.1+/- Il4r+/+ WT 

and either Cd45.2+/+ Cd45.1-/- Il4r-/- (Il4ra-/-) or Cd45.2+/+ Cd45.1-/- Il4r+/+ (WT) 

marrow (Figure 6B) to offer a direct comparison between wildtype and knockout 

donor cells. Following a recovery period, mice were treated with nebulized LPS, 

placed in hypoxia (10% O2), and chimerism within the Ly6G+ neutrophil population 

determined by flow cytometry. Blood neutrophils at both time-points exhibited higher 

chimerism in il4ra-/--recipient mice (Figure 6C), an effect which was also seen in the 

recruited BAL neutrophils (Figure 6D).  In our model, CXCR4 expression in bone 

marrow neutrophils was not significantly different between donor groups, suggesting 

that CXCR4 was not responsible for the increased chimerism of il4ra-/- blood and 

BAL neutrophils in this setting (Figure 6E).

IL-4 promotes inflammation resolution in hypoxia through increased 

neutrophil apoptosis

To determine whether IL-4 could directly promote resolution of neutrophilic 

inflammation in the context of systemic hypoxia, we used the same model of hypoxic 

airway inflammation with addition of sustained local release of IL-4 using IL-4 

complex (IL4c) at 6 hours post-LPS to allow for neutrophil recruitment to occur 

(Figure 6F). Bone marrow neutrophil expression of chemokines involved in bone 

marrow neutrophil retention (CXCR4) and release (CXCR2) 14 (Figure 6G, H) was 

initially explored.  Whilst IL-4c did appear to increase the proportion of bone marrow 

neutrophils expressing CXCR4 (Figure 6G), it also significantly increased the 

proportion of CXCR2-expressing neutrophils in-vivo to nearly 100% (Figure 6H) with 

an equivalent proportion of circulating neutrophils observed between treatment 
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groups (Figure 6I). Furthermore, peak recruitment to the alveolar space was also 

equal between groups at 24 hours (Figure 6J).  During the resolution phase IL-4c 

treatment increased 24 hour BAL neutrophil apoptosis levels, with a subsequent 

reduction in BAL neutrophil counts at 48 hours (Figure 6J-K), and a reduction in 

extracellular elastase release measured in BAL fluid samples (Figure 6L). 

Discussion

We show that IL-4 signaling in neutrophils can regulate hypoxia-induced pro-

inflammatory survival programs and can be further manipulated in vivo to promote 

restoration of constitutive rates of neutrophil apoptosis and inflammation resolution.  

This work extends the previously defined roles of IL-4 in type 2 mediated alternative 

reprogramming of macrophages during allergic, parasitic, wound healing and acute 

inflammatory responses to now include direct regulation of hypoxic neutrophilic 

inflammation.

We show that in ARDS, a condition characterized by systemic hypoxia and 

uncontrolled neutrophilic inflammation, the IL-4 axis is activated and airspace 

neutrophils have the capacity to respond to this stimulus. Furthermore, we observe 

that IL-4, and the related cytokine IL-13, directly increase apoptosis of human 

neutrophils under hypoxic conditions and following LPS challenge, an effect that was 

replicated in murine inflammatory BAL neutrophils. Abrogation of hypoxic survival by 

IL-4 and IL-13 was dependent on the IL4Rα-downstream signaling mediators STAT3 

and STAT6. PPARγ, a known target gene of STAT3 and STAT6, and important for 

macrophage polarization to IL-4 26,36, was also induced by IL-4 in healthy human 

neutrophils, both in normoxia, as described previously 37, and in hypoxia. 
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PPARγ upregulation has previously been linked to changes in neutrophil function in 

patients with glycogen storage disease type Ib 38, where circulating neutropenia and 

defective respiratory burst are described, alongside increased levels of HIF-1α. In 

these patients’ neutrophils, treatment with a PPARγ antagonist partially rescued the 

functional defects.  In contrast, we observe that in metabolically sufficient 

neutrophils, IL4Rα signaling, with induction of PPARγ, results in downregulation of 

HIF-1 protein expression, associated with increased PHD2 expression. These 

findings are in line with a previous study describing effects of PPARγ on PHD 

transcription and protein levels in adipocytes 30. Importantly, we show that neutrophil 

PHD2 expression is essential to reproduce the inhibitory effects of IL-4 on hypoxic 

neutrophil survival, since PHD2-/- neutrophils are resistant to IL-4-induced hypoxic 

apoptosis.

Additionally, we also observed a decrease in hypoxic NF-κB RelA protein levels 

following IL-4 treatment. We have previously shown that NF-κB acting downstream 

of HIF1α is crucial for neutrophil hypoxic survival 8, while inhibition of RelA 

transcriptional activity by PPARγ has been implicated in apoptosis of monocyte-

derived macrophages 39. NF-κB has been described as a critical transcriptional 

regulator of HIF-1, but the changes in HIF-1 and NF-κB seen with the combination 

of hypoxia and IL-4 are limited to changes in protein abundance and thus 

posttranslational in nature. This is of particular relevance given the overlap in 

posttranscriptional regulation of HIF-1 and NF-κB by asparaginyl and prolyl 

hydroxylation 40,41. 

Previous in-vivo studies have demonstrated endogenous IL-4 release in the lung in 

response to LPS 33,34 and upregulation of IL4Rα on myeloid cells in response to pro-
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inflammatory stimuli 15, raising the possibility that IL-4/IL4Rα signals are generated 

early in the course of inflammation to ensure timely resolution. Woytschak et al. 

recently described a role for IL4c in limiting neutrophil recruitment during bacterial 

infections 14. In contrast, our work indicates an effect of IL-4 specifically on 

inflammation resolution, when IL4c is administered after onset of the inflammatory 

response. Using competitive chimeras we show that in the inflamed liver, which is 

characterized by local hypoxia 31 , il4ra-/- neutrophils have an advantage over their 

wildtype controls with increased numbers following treatment with IL-4c, 

demonstrating a resistance to the pro-resolution effects of this cytokine. 

Furthermore, in our model of hypoxic ALI, BAL neutrophil counts following IL4c 

treatment were similar to controls during the recruitment phase, but lower after 48 

hours, while apoptosis rates were higher. In keeping with IL-4 driving apoptosis 

mediated inflammation resolution 42, we observed an increase in 24 hour BAL 

neutrophil apoptosis levels with a subsequent reduction in BAL neutrophil counts at 

48 hours following IL4c-treatment and a reduction in BAL elastase. Blood neutrophil 

counts as a percentage of total leukocytes were equivalent and neutrophils from 

IL4c-treated animals expressed high levels of CXCR2, favoring marrow release.  

These data suggest that, in the context of systemic hypoxia and LPS, the major 

effect of locally delivered exogenous IL-4 on neutrophils was not on migration. 

These data thus extend our current understanding from IL-4 influencing inflammation 

resolution via alternative macrophage activation to a model in which IL-4 

concurrently limits the acute neutrophilic response through direct inhibition of hypoxic 

neutrophil survival. One key limitation of this work is the lack of evidence as to 

whether IL-4 supplementation, in addition to promoting accelerated inflammation 
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resolution, can recover organ function.  These are important future studies to 

determine the potential of therapies targeting Il-4.  Such therapies would be limited to 

the site of tissue injury, where both IL-4 release and tissue hypoxia occur, and not 

compromise systemic neutrophil function or longevity. Further understanding of the 

broader importance of this pathway both to allergic airway inflammation and more 

chronic respiratory conditions typified by neutrophilic inflammation, for example 

COPD, is also required particularly given the current therapeutic interest in blocking 

IL-4 signaling responses to limit disease progression.
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Figure Legends

Figure 1: IL-4 is present in human and mouse models of ARDS with IL-4Ra 

expression found in both human and mouse neutrophils

(A) IL-4 levels were measured in BAL samples obtained from ARDS patients and 

healthy controls by ultra-sensitive ELISA. (B) Neutrophils from whole blood were 

identified by flow cytometry from ARDS patients and healthy controls and levels of 

IL-4Ra surface protein and transcript measured. (C) Representative histogram 

(dashed black line=normoxia isotype, dashed grey= hypoxia isotype, black solid 

line=normoxia, grey solid line=hypoxia) and summary data of IL4Rα expression on 

human peripheral blood neutrophils after 4 hours culture +/- IL-4. Cell surface protein 

was determined by flow cytometry, with freshly isolated (T0) cells for comparison (D) 

and mRNA was quantified relative to ACTB by qRT-PCR. (E) IL-4 levels from BAL 

from LPS-treated mice or naïve mice (C57BL/6) obtained at 24 hours was measured 

by multiplex assay and (F) levels of IL-4Ra expression on lung neutrophils ,(G) 

alveolar macrophages and (H) T cells  were measured by flow cytometry. (I) 

Apoptosis rates of inflammatory BAL neutrophils harvested from normoxic C57BL/6 

mice 24 hours post-LPS nebulization then cultured ex vivo for 6 hours in hypoxia +/- 

100ng/ml IL-4 as determined by morphology. Data are expressed as individual data 

points with median +/- IQR (A,B,E,I) or mean +/- SEM (C,D,F-H).  Statistical 

significance was determined by Mann Whitney (A, B (IL4R mRNA), E, I), unpaired 

Student’s t test (B (IL4R gMFI)), or 2-way ANOVA with Holm-Sidak post-tests 

comparing each condition to unstimulated control within normoxic and hypoxic 

groups respectively (C, D, F-H). *p<0.05, **p<0.01, ***p<0.001
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Figure 2: Modulation of human neutrophil hypoxic survival and inflammatory 

responses by IL-4

(A) Apoptosis of cytokine-treated neutrophils was assessed by morphology at 6 and 

(B, C) 20 hours, or (D, E, F) by flow cytometry with annexin V at 20 hours (n=3-6). 

(G, H) Neutrophil apoptosis following pre-incubation with IL4Rα-neutralizing antibody 

(α-IL4RA) prior to culture with IL-4 or IL-13 for 20 hours in hypoxia (n=3-4). (I) Effect 

of IL-4 and IL-13 on LPS-induced survival in normoxia at 20 hours (n=3) as 

determined by morphology. (J) Effects of IL-4 on LPS-mediated pro-inflammatory 

gene induction in human peripheral blood neutrophils cultured for 4 hours in 

normoxia or hypoxia, determined by qRT-PCR (relative to ACTB) (n=4). (K) CCL17 

expression relative to ACTB was determined by qRT-PCR, following 4 hours culture 

in normoxia or hypoxia in the presence of IFNγ, IL-4 and/or LPS (n=4). (L) Reactive 

oxygen species (ROS) production was determined by flow cytometry using the 

fluorescent oxygen sensor DCF-DA. Neutrophils were incubated with IL-4 or 

IFNγ+LPS for 4 hours, +/- 100nM fMLP for a further 45 minutes (n=4). Data are 

expressed as mean +/- SEM.  Significance was determined by repeated measures 

2-way ANOVA with Holm-Sidak post-test comparing cytokine treatments to 

unstimulated control within the normoxic and hypoxic groups respectively (A-E,K), or 

LPS control (J), repeated measures 1-way ANOVA with post-test for linear trend 

(G,H) or Holm-Sidak post-test (I) or separate 2-way ANOVAs for baseline and fMLP-

stimulated ROS production, with Holm Sidak post tests comparing IFNγ+LPS and IL-

4 to unstimulated control within normoxic and hypoxic groups respectively (L).  

*p<0.05, **p<0.01, **** p<0.0001.
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Figure 3: IL-4 regulates NF-κB at a post-transcriptional level without altering 

metabolic flux

(A) Expression of glycolytic genes in human neutrophils after 8 hours culture in 

normoxia or hypoxia with IL-4 or IFNγ+LPS, determined by qRT-PCR relative to 

ACTB (n=4). (B) Flux through glycolysis and fatty acid oxidation (FAO) were 

quantified by 3H2O release following uptake of [5-3H]-glucose and [9,10-3H]-palmitic 

acid respectively, in normoxia or hypoxia +/-IL-4. Energy status (ATP/ADP ratio) 

after 4 hours was determined by reverse phase HPLC (n=3). (C) NF-κB p65 (RELA) 

protein levels after 6 hours culture in normoxia or hypoxia +/- IL-4 were assessed by 

Western blot, levels quantified relative to p38 by densitometry and fold change 

calculated relative to normoxia (n=4). (D) Gene expression of RELA (NF-κB) and 

CHUK (IKKα) relative to ACTB were determined by qRT-PCR following 4 hours 

culture in normoxia or hypoxia +/- IL-4 (10ng/ml) (n=4). Data are expressed as mean 

+/- SEM. Statistical significance was determined by repeated measures 2-way 

ANOVA with Holm-Sidak post-test comparisons to unstimulated controls within the 

normoxic and hypoxic groups respectively (A, B, D) or Mann Whitney (C). *p<0.05, 

**p<0.01.
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Figure 4:  IL-4-mediated STAT/PPARγ signaling upregulates PHD2 transcript 

and reduces HIF1α protein levels, resulting in loss of hypoxic neutrophil 

survival

(A, B) Effect of STAT3 and STAT6 inhibitors (5,15-DPP and AS 1517499 

respectively) on cytokine-induced 20 hour human neutrophil apoptosis in hypoxia 

(determined by morphology) (n=3-4). (C-E) Neutrophil expression of genes involved 

in PPARγ signaling and (F) of EGLN1/PHD2, following 4 hours cytokine/LPS 

treatment in normoxia or hypoxia, determined by qRT-PCR (relative to ACTB) (n=4). 

(G) HIF1A gene expression, following 4 hours cytokine/LPS treatment in normoxia or 

hypoxia, determined by qRT-PCR (relative to ACTB) (n=4). (H) HIF-1α protein levels 

following 6 hours culture with IL-4 in normoxia or hypoxia were assessed by Western 

blot and levels relative to p38 quantified by densitometry (n=4). (I) Phd2-/- mice or 

their littermate controls were treated with nebulized LPS and BAL neutrophils treated 

with IL-4 (100ng/ml) in hypoxia ex-vivo for 6 hours. Data normalized to apoptosis 

rates in unstimulated hypoxia control. (J) Schematic representation of IL-4 signaling 

pathway leading to loss of hypoxic survival in neutrophils. Data are expressed as 

mean +/- SEM (A-H), or median+/- IQR (I) .  Statistical significance was determined 

by 1-way ANOVA with Holm-Sidak post-test comparing cytokine only group to every 

other group (A,B), repeated measures 2-way ANOVA with Holm-Sidak post-test 

comparisons to unstimulated controls within normoxic and hypoxic groups 

respectively (C-H) or Mann Whitney of log-transformed data (I). *p<0.05, **p<0.01, 

***p<0.001, **** p<0.0001.
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Figure 5: Il4ra-/- neutrophils have a competitive advantage in bone marrow 

chimeras in a liver injury model

(A) Cd45.2+/- Cd45.1+/- mice were irradiated to deplete host BM, then reconstituted 

with Cd45.2+/+ Cd45.1-/- donor marrow, either WT or Il4ra-/-, as depicted. Mice were 

exposed to a single dose of CCl4 to induce liver damage, or olive oil vehicle control. 

(B) Chimerism (% CD45.1- donor neutrophils) was determined by flow cytometry. (C) 

Blood chimerism at day 0 (pre-CCl4) in mice receiving WT or Il4ra-/- marrow. (D) 

Blood chimerism at day 0 (pre-CCl4) and day 3 in mice treated with CCl4 +/- IL4c and 

in olive oil vehicle controls. (E) Liver chimerism normalized to blood at day 3 post 

CCl4. (F,G) Total numbers of donor (F) and host (G) neutrophils per gram of liver at 

day 3 post-CCl4. Statistical significance was determined by unpaired Student’s t test 

(C), multiple t tests with Holm Sidak correction (day 0 vs day 3 for each 

treatment/genotype combination) (D) or 2-way ANOVA with Holm Sidak post tests 

(WT vs. Il4rα-/-) (E-G). Data shown as individual mice with mean+/- SEM. *p<0.05, 

*** p<0.001, ****p<0.0001.
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Figure 6: Exogenous IL-4c treatment accelerates the resolution of neutrophilic 

lung inflammation in hypoxia

(A) IL-4 levels from BAL from naïve mice or mice treated with nebulized LPS and 

placed in hypoxia (10%) for 24 hours was measured by multiplex assay. (B) 

Cd45.2+/- Cd45.1+/-  mice were irradiated to deplete host BM, then injected with donor 

marrow comprising 50% WT Cd45.2+/-  Cd45.1+/- mixed with either 50% Il4ra+/+ 

Cd45.2+/+ Cd45.1-/- (WT) or 50% Il4ra-/- Cd45.2+/+ CD45.1-/- (Il4ra-/- ), as depicted. 

Mice were nebulized with LPS and placed in hypoxia 25 days post-transplant. 

Neutrophil chimerism (% of Ly6G+ cells lacking CD45.1) was determined by flow 

cytometry. Chimerism was normalized to WT control chimerism at each timepoint. 

(C) Blood  and (D) BAL neutrophil chimerism post-LPS and hypoxia. (E) Proportion 

of donor (Cd45.2+/+ Cd45.1-/-) bone marrow (BM) CXCR4+ neutrophils.  (F) C57BL/6 

mice were treated  with intratracheal IL-4c or PBS 6 hours post-LPS nebulization and 

returned to hypoxia for a further 18 hours. (G) Bone marrow neutrophil expression of 

CXCR4 and (H) CXCR2 (H) was determined by flow cytometry (representative 

histograms shown- light grey FMO control, dark grey (PBS) and dotted line (IL-4c). 

(I) Proportion of circulating neutrophils in whole blood leukocytes. (J) Total BAL 

neutrophils were determined by flow cytometry. (K) Proportion of BAL apoptotic 

(Annexin V+) neutrophils was measured by flow cytometry. (L) Total BAL IgM release 

was measured at 24 hours. Data shown as individual points with median (A,E,G-I,L) 

+/- IQR or mean +/- (C,D,J,K). Statistical significance was determined by 2-way 

ANOVA with Holm Sidak post test (WT vs Il4ra-/- for each timepoint) (C, D, J, K), 

Mann-Whitney  (A, E, L) or unpaired Student’s t test (G, H, I). *p<0.05, **p<0.01, 

***p<0.001.
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Supplementary Methods

ARDS and healthy control BAL sampling

The diagnosis of ARDS was in accordance with the North American-European 

Consensus definition. Bronchoalveolar lavage (BAL) fluid was obtained from ARDS 

patients recruited to the HARP study (testing efficacy of simvastatin in patients with 

ALI/ARDS) at baseline, as previously described1. Ethical approvals for measurement of 

BAL cytokines in this study were obtained from the Office for Research Ethics 

Committee Northern Ireland (ORECNI), reference 06/NIR02/77 and Queen’s University 

of Belfast School Research Ethics Committee (QUB SREC), reference 18.08. Healthy 

non-smoking normal volunteers underwent research bronchoscopy as previously 

described2, with ethical approval from ORECNI, reference 12/NI/0082.  Patient and 

healthy control demographic details are included in supplementary table 1.

Generation of lung-protected bone marrow chimeras (lung injury model)

C57BL/6J Cd45.1+/- Cd45.2+/- mice were irradiated with a total of 12Gy over 4 days in 

thrice-daily fractions prior to receiving 1x106 BM cells in 100μL PBS by tail vein injection 

(50% Cd45.2+/+ C57BL/6Jor Il4ra-/-and 50% Cd45.1+/- Cd45.2+/-).

 

Mouse LPS acute lung injury model

Mice were nebulized with 3mg LPS from Pseudomonas aeruginosa 10 (Sigma), housed 

in normoxia (room oxygen, 21% O2) or hypoxia (10% O2). Blood, BAL, lungs and bone 

marrow were harvested for analysis. BAL samples underwent red cell lysis (Biolegend) 

prior to flow cytometry staining.  Single cell suspensions were obtained by mechanical 
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dissociation and enzymatic digestion (RPMI with 0.625 mg/ml collagenase D (Roche), 

0.85 mg/ml collagenase V (Sigma-Aldrich), 1 mg/ml dispase (Gibco, Invitrogen) and 30 

U/ml DNase (Roche Diagnostics GmbH).  

Generation of tissue-protected bone marrow chimeras (liver injury model)

C57BL/6J Cd45.1+/- Cd45.2+/- mice were anaesthetized and exposed to a single dose of 

9.5Gy irradiation, with hind legs and lower abdomen protected by a 2-inch lead shield. 

Mice were injected via the tail vein with 5x106 BM cells from Cd45.2+/+ WT or Il4ra-/-

 donor mice the following day, then housed in IVC cages for 8 weeks, with baseline 

chimerism established by tail vein bleed (20μl).

Liver injury model

A 25% suspension of CCl4 (Sigma-Aldrich) or olive oil (Sigma-Aldrich) (vehicle) was 

administered to mice intraperitoneally (i.p.) at 4μl/g. 24 hours later, 4μl/g IL4c or sterile 

PBS (vehicle) was administered subcutaneously. After 48 hours, mice were venesected 

and culled. Mice were perfused with PBS prior to liver harvest with single cell 

suspensions obtained as detailed above.

Flow cytometry

For IL4Rα expression quantification in ARDS patients, whole blood was lysed 

(ebioscience) and α-CD16/32 Fc block applied (ebioscience). Cells were then stained 

with CD45, CD11b, CD49d and IL4Rα with geometric fluorescence of neutrophil IL4Rα 

quantified. For healthy donor samples median fluorescence of the IL4Rα-stained 
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sample was divided by that of a full minus-one FMO+isotype control for the population 

assessed.

Mouse cells were treated with α-CD16/32 Fc block (e-bioscience) and mouse serum 

(Thermo Fisher) prior to staining with antibodies (see Supplementary Table 2). Relevant 

FMO or FMO+isotype samples were used as controls. Cells were acquired on the 

LSRFortessa or Calibur (Becton Dickinson).  Compensation was performed using BD 

FACSDiva software and data analysed in FlowJo version 10. 

RNA isolation and relative quantification

Neutrophil RNA was extracted and cDNA subjected to relative qRT-PCR quantification 

using TaqMan® gene expression assays (Applied Biosystems, Thermo Fisher) 

(Supplementary Table 3). Relative abundance was determined by interpolation from 

standard curve and normalized to ACTB.

Protein extraction and immunoblotting

Immunoblotting for blood neutrophil human HIF-1α (clone 54, BD), NF-κB p65 

(polyclonal, Abcam) and p38 MAPK (polyclonal, Cell Signalling Technology), with HRP-

conjugated secondaries: anti-mouse IgG (Cell Signalling Technology) and goat anti-

rabbit Ig (Dako) was performed and normalized to p38 expression.

Functional and metabolic assays
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Human neutrophils were treated with either IL-4 or IFNγ+LPS in normoxia or hypoxia for 

4-6 hours for the following assays: 

ROS production: Cells were loaded with 3 µg/ml 2′,7′-dichlorofluorescin diacetate 

(Molecular Probes) prior to stimulation (45 mins) with 100nM N-Formyl-Met-Leu-Phe 

(fMLP, Sigma). ROS levels were determined by flow cytometry (FL1 median 

fluorescence normalized to unstained control).

Energy status: Cells were washed in PBS and harvested in 100μl ice cold 5% 

perchloric acid supplemented with 0.5 mM EDTA. Following addition of K2CO3, 

nucleotide levels were measured using ion-pair RP-HPLC.

 Glycolytic and fatty acid flux: For glycolysis measurement, cells were cultured in 

glucose-deficient RPMI 1640 medium (Gibco, Thermo Fisher) supplemented with 5.5 

mM unlabelled glucose, 10% FCS and 0.4 μCi/ml [5-3H]-D-glucose (Perkin Elmer). Fatty 

acid oxidation was measured using complete RPMI with 10% FCS and 2 μCi/ml [9,10-

3H]-palmitic acid (Perkin Elmer). Cell supernatant was added to 12% perchloric acid and 

3H2O was captured over a period of 48 hours at 37 °C. Radioactivity was determined by 

liquid scintillation counting.

Human BAL IL-4 quantification

IL-4 levels from human BAL samples from patients with ARDS or healthy donors were 

measured using a super-sensitive IL-4 ELISA kit as per manufacturer’s instructions 

(RnD).

Mouse BAL IL-4 quantification
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IL-4 levels in BAL samples from either naïve or LPS-nebulized mice housed in normoxia 

or hypoxia were measured using a multiplex assay as per manufacturer’s instructions 

(MSD). 
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Supplemetary Figure 1: Preserved neutrophil uptake of glucose and expression 

of PPARGC1B in the presence of IL-4

 

(A) Human peripheral blood neutrophils were cultured for 4 hours +/- IFNγ+LPS or IL-4 

in normoxia or hypoxia. Neutrophil uptake of the fluorescently-labelled glucose analog 

2-NBDG was assessed by flow cytometry (median fluorescence intensity) (n=4). (B) 

Human peripheral blood neutrophils were cultured for 8 hours +/- IFNγ+LPS or IL-4 in 

normoxia or hypoxia. Relative expression of PPARGC1B was determined by qRT-PCR 

(n=4). Data are expressed as mean +/- SEM. Statistical significance was determined by 

repeated measures 2-way ANOVA with Holm-Sidak post-test comparisons to 

unstimulated controls within the normoxic and hypoxic groups respectively. *p<0.05, 

**p<0.01, ****p<0.0001.

Supplementary Figure 2: Preserved neutrophil PHD1 and PHD3 expression with 

IL-4 treatment

(A) Effect of STAT3 and STAT6 inhibitors (5,15-DPP and AS 1517499 respectively) 

alone on human neutrophil apoptosis (measured by cell morphology) cultured in 

hypoxia for 20 hours. (B) Human peripheral blood neutrophils were cultured for 4 hours 

+/- LPS, IFNγ and/or IL-4 in normoxia or hypoxia. PHD1 and PHD3 gene expression 

relative to ACTB were determined by qRT-PCR (n=4). Data are expressed as mean +/- 

SEM.
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Supplemetary Figure 3: Alveolar macrophages remain predominantly of host 

origin following fractionated irradiation

(A) Flow cytometric assessment of lung digest alveolar macrophage chimerism 

following fractionated irradiation as determined by Cd45.2+/+ Cd45.1-/-  (donor) 

and Cd45.2+/- Cd45.1+/-  expression (host).
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ARDS Healthy Volunteers

Age (median/IQR) 56 (40-74) 24 (22-33)

%male:female 70:30 67:33

Supplementary Table 1
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Antibody Clone Source Fluorophore Dilution

CD45.1 A20 Biolegend FITC, BV421, APC 1:200

F4/80 BM8 Biolegend PE 1:250

Siglec F E50-2440 BD  PE-Dazzle 1:800

Tim 4 RMT4-54 Biolegend PE-CY7 1:200

CD31 MEC13.3 Biolegend APC 1:200

CD45.2 104 Biolegend BV421, PE-Cy7, 

AF700

1:200

CD11b M1/70 Biolegend APC-CY7 1:200

MHCII M5.114.15.2 eBioscience PerCP Cy5.5, V450 1:400

CD3 17A2 Biolegend BV421, Bio 1:200

CD19 6D5 Biolegend BV421, Bio 1:200

Ly6G 1A8 Biolegend Bio, AF488, PE 1:200

CD335 29A1.4 Biolegend Bio 1:200

Ly6C MK1.4 Biolegend BV421, BV711 1:400

Pan-CD45 30-F11 Biolegend AF700 1:200

IL-4Ra I015F8 Biolegend PE 3ul/sample

CXCR2 SA044G4 Biolegend PE 1:200

CXCR4 L276F12 Biolegend APC 1:200

CD11c N418 Biolegend PE-Cy7 1:200

CD64 X54-5/7.1 Biolegend APC 1:200

Streptavidin - BD biosciences BV650 1:200

LIVE/DEAD® 

Fixable Aqua

- Life Technologies 

or Biolegend

1:100

Human CD46d 9F10 Biolegend FITC 1:20

Human CD124 M57 BD PE 1:5

Human CD45 2D1 Biolegend AF700 1:20

Human PE IgG1 

Iso

MOPC-21 BD PE Lot-

concentration 

dependent

Supplementary Table 2
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Gene 
Name

Primer I.D. Source Catalog 
number

ACTB Hs99999903_m1 Thermo Fisher 4331182
ALOX15 Hs00609608_m1 Thermo Fisher 4331182
CCL2 Hs00234140_m1 Thermo Fisher 4331182
CCL3 Hs00234142_m1 Thermo Fisher 4331182
CCL17 Hs00171074_m1 Thermo Fisher 4331182
CHUK Hs00989502_m1 Thermo Fisher 4331182
DDIT3 Hs99999172_m1 Thermo Fisher 4331182
EGLN1 Hs00254392_m1 Thermo Fisher 4331182
EGLN2 Hs00363196_m1 Thermo Fisher 4331182
EGLN3 Hs00222966_m1 Thermo Fisher 4331182
GAPDH Hs99999905_m1 Thermo Fisher 4331182
HIF1A Hs00153153_m1 Thermo Fisher 4331182
IL1B Hs01555410_m1 Thermo Fisher 4331182
IL4R Hs00166237_m1 Thermo Fisher 4331182
PFKFB3 Hs00998700_m1 Thermo Fisher 4331182
PPARGC1B Custom made; 

Sense: 
GGAATACCTCAATACCTCAGACAA
Anti-sense: 
CTCTCTCACGGGTGTTCTCT

Primer Design 
Ltd

DD-hu-300 
(primer 
and double 
dye assay)

PGK1 Hs99999906_m1 Thermo Fisher 4331182
PKM Hs00987254_m1 Thermo Fisher 4331182
PPARG Hs00234592_m1 Thermo Fisher 4331182
RELA Hs01042014_m1 Thermo Fisher 4351372
TNF Hs01113624_g1 Thermo Fisher 4331182

Supplementary Table 3
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