398 research outputs found

    A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications

    Get PDF
    Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used to develop chassis for biotechnological applications. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vectors for therapeutic applications

    Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model

    Get PDF
    Chronic wounds are a major complication in patients with cardiovascular diseases. Cell therapies have shown potential to stimulate wound healing, but clinical trials using adult stem cells have been tempered by limited numbers of cells and invasive procurement procedures. Induced pluripotent stem cells (iPSCs) have several advantages of other cell types, for example they can be generated in abundance from patients’ somatic cells (autologous) or those from a matched donor. iPSCs can be efficiently differentiated to functional endothelial cells (iPSC-ECs). Here, we used a murine excisional wound model to test the pro-angiogenic properties of iPSC-ECs in wound healing. Two full-thickness wounds were made on the dorsum of NOD-SCID mice and splinted. iPSC-ECs (5 × 105) were topically applied to one wound, with the other serving as a control. Treatment with iPSC-ECs significantly increased wound perfusion and accelerated wound closure. Expression of endothelial cell (EC) surface marker, platelet endothelial cell adhesion molecule (PECAM-1) (CD31), and pro-angiogenic EC receptor, Tie1, mRNA was up-regulated in iPSC-EC treated wounds at 7 days post-wounding. Histological analysis of wound sections showed increased capillary density in iPSC-EC wounds at days 7 and 14 post-wounding, and increased collagen content at day 14. Anti-GFP fluorescence confirmed presence of iPSC-ECs in the wounds. Bioluminescent imaging (BLI) showed progressive decline of iPSC-ECs over time, suggesting that iPSC-ECs are acting primarily through short-term paracrine effects. These results highlight the pro-regenerative effects of iPSC-ECs and demonstrate that they are a promising potential therapy for intractable wounds.Zoë E. Clayton, Richard P. Tan, Maria M. Miravet, Katarina Lennartsson, John P. Cooke, Christina A. Bursill, Steven G. Wise, Sanjay Pate

    The role of clonal communication and heterogeneity in breast cancer

    Get PDF
    Background: Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in molecular and phenotypic heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells. We aimed to dissect the molecular mechanisms underlying the cooperation between different clones. Methods: We produced clonal cell lines derived from the MDA-MB-231 breast cancer cell line, using the UbC-StarTrack system, which allowed tracking of multiple clones by color: GFP C3, mKO E10 and Sapphire D7. Characterization of these clones was performed by growth rate, cell metabolic activity, wound healing, invasion assays and genetic and epigenetic arrays. Tumorigenicity was tested by orthotopic and intravenous injections. Clonal cooperation was evaluated by medium complementation, co-culture and co-injection assays. Results: Characterization of these clones in vitro revealed clear genetic and epigenetic differences that affected growth rate, cell metabolic activity, morphology and cytokine expression among cell lines. In vivo, all clonal cell lines were able to form tumors; however, injection of an equal mix of the different clones led to tumors with very few mKO E10 cells. Additionally, the mKO E10 clonal cell line showed a significant inability to form lung metastases. These results confirm that even in stable cell lines heterogeneity is present. In vitro, the complementation of growth medium with medium or exosomes from parental or clonal cell lines increased the growth rate of the other clones. Complementation assays, co-growth and co-injection of mKO E10 and GFP C3 clonal cell lines increased the efficiency of invasion and migration. Conclusions: These findings support a model where interplay between clones confers aggressiveness, and which may allow identification of the factors involved in cellular communication that could play a role in clonal cooperation and thus represent new targets for preventing tumor progression

    Gamma-Secretase-Dependent and -Independent Effects of Presenilin1 on β-Catenin·Tcf-4 Transcriptional Activity

    Get PDF
    Presenilin1 (PS1) is a component of the γ-secretase complex mutated in cases of Familial Alzheimer's disease (FAD). PS1 is synthesized as a 50 kDa peptide subsequently processed to two 29 and 20 kDa subunits that remain associated. Processing of PS1 is inhibited by several mutations detected in FAD patients. PS1 acts as negative modulator of β-catenin·Tcf-4 transcriptional activity. In this article we show that in murine embryonic fibroblasts (MEFs) the mechanisms of action of the processed and non-processed forms of PS1 on β-catenin·Tcf-4 transcription are different. Whereas non-processed PS1 inhibits β-catenin·Tcf-4 activity through a mechanism independent of γ-secretase and associated with the interaction of this protein with plakoglobin and Tcf-4, the effect of processed PS1 is prevented by γ-secretase inhibitors, and requires its interaction with E- or N-cadherin and the generation of cytosolic terminal fragments of these two cadherins, which in turn destabilize the β-catenin transcriptional cofactor CBP. Accordingly, the two forms of PS1 interact differently with E-cadherin or β-catenin and plakoglobin: whereas processed PS1 binds E-cadherin with high affinity and β-catenin or plakoglobin weakly, the non-processed form behaves inversely. Moreover, contrarily to processed PS1, that decreases the levels of c-fos RNA, non-processed PS1 inhibits the expression c-myc, a known target of β-catenin·Tcf-4, and does not block the activity of other transcriptional factors requiring CBP. These results indicate that prevention of PS1 processing in FAD affects the mechanism of repression of the transcriptional activity dependent on β-catenin

    Recent Advances in Childhood Arterial Ischemic Stroke

    Get PDF
    Although many underlying diseases have been reported in the setting of childhood arterial ischemic stroke, emerging research demonstrates that non-atherosclerotic intracerebral arteriopathies in otherwise healthy children are prevalent. Minor infections may play a role in arteriopathies that have no other apparent underlying cause. Although stroke in childhood differs in many aspects from adult stroke, few systematic studies specific to pediatrics are available to inform stroke management. Treatment trials of pediatric stroke are required to determine the best strategies for acute treatment and secondary stroke prevention. The high cost of pediatric stroke to children, families, and society demands further study of its risk factors, management, and outcomes. This review focuses on the recent findings in childhood arterial ischemic stroke

    Super-resolution:A comprehensive survey

    Get PDF

    Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3

    Get PDF
    We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9-1.8+1.7 for z≲1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum
    corecore