2,689 research outputs found
Photometric redshifts for Quasars in multi band Surveys
MLPQNA stands for Multi Layer Perceptron with Quasi Newton Algorithm and it
is a machine learning method which can be used to cope with regression and
classification problems on complex and massive data sets. In this paper we give
the formal description of the method and present the results of its application
to the evaluation of photometric redshifts for quasars. The data set used for
the experiment was obtained by merging four different surveys (SDSS, GALEX,
UKIDSS and WISE), thus covering a wide range of wavelengths from the UV to the
mid-infrared. The method is able i) to achieve a very high accuracy; ii) to
drastically reduce the number of outliers and catastrophic objects; iii) to
discriminate among parameters (or features) on the basis of their significance,
so that the number of features used for training and analysis can be optimized
in order to reduce both the computational demands and the effects of
degeneracy. The best experiment, which makes use of a selected combination of
parameters drawn from the four surveys, leads, in terms of DeltaZnorm (i.e.
(zspec-zphot)/(1+zspec)), to an average of DeltaZnorm = 0.004, a standard
deviation sigma = 0.069 and a Median Absolute Deviation MAD = 0.02 over the
whole redshift range (i.e. zspec <= 3.6), defined by the 4-survey cross-matched
spectroscopic sample. The fraction of catastrophic outliers, i.e. of objects
with photo-z deviating more than 2sigma from the spectroscopic value is < 3%,
leading to a sigma = 0.035 after their removal, over the same redshift range.
The method is made available to the community through the DAMEWARE web
application.Comment: 38 pages, Submitted to ApJ in February 2013; Accepted by ApJ in May
201
Weak Lensing Mass Reconstruction of the Galaxy Cluster Abell 209
Weak lensing applied to deep optical images of clusters of galaxies provides
a powerful tool to reconstruct the distribution of the gravitating mass
associated to these structures. We use the shear signal extracted by an
analysis of deep exposures of a region centered around the galaxy cluster Abell
209, at redshift z=0.2, to derive both a map of the projected mass distribution
and an estimate of the total mass within a characteristic radius. We use a
series of deep archival R-band images from CFHT-12k, covering an area of 0.3
deg^2. We determine the shear of background galaxy images using a new
implementation of the modified Kaiser-Squires-Broadhurst pipeline for shear
determination, which we has been tested against the ``Shear TEsting Program 1
and 2'' simulations. We use mass aperture statistics to produce maps of the 2
dimensional density distribution, and parametric fits using both
Navarro-Frenk-White (NFW) and singular-isothermal-sphere profiles to constrain
the total mass. The projected mass distribution shows a pronounced asymmetry,
with an elongated structure extending from the SE to the NW. This is in general
agreement with the optical distribution previously found by other authors. A
similar elongation was previously detected in the X-ray emission map, and in
the distribution of galaxy colours. The circular NFW mass profile fit gives a
total mass of M_{200} = 7.7^{+4.3}_{-2.7} 10^{14} solar masses inside the
virial radius r_{200} = 1.8\pm 0.3 Mpc. The weak lensing profile reinforces the
evidence for an elongated structure of Abell 209, as previously suggested by
studies of the galaxy distribution and velocities.Comment: accepted by A&A, 15 pages, 11 figure
ACCESS - V. Dissecting ram-pressure stripping through integral-field spectroscopy and multi-band imaging
We study the case of a bright (L>L*) barred spiral galaxy from the rich
cluster A3558 in the Shapley supercluster core (z=0.05) undergoing ram-pressure
stripping. Integral-field spectroscopy, complemented by multi-band imaging,
allows us to reveal the impact of ram pressure on the interstellar medium. We
study in detail the kinematics and the physical conditions of the ionized gas
and the properties of the stellar populations. We observe one-sided extraplanar
ionized gas along the full extent of the galaxy disc. Narrow-band Halpha
imaging resolves this outflow into a complex of knots and filaments. The gas
velocity field is complex with the extraplanar gas showing signature of
rotation. In all parts of the galaxy, we find a significant contribution from
shock excitation, as well as emission powered by star formation. Shock-ionized
gas is associated with the turbulent gas outflow and highly attenuated by dust.
All these findings cover the whole phenomenology of early-stage ram-pressure
stripping. Intense, highly obscured star formation is taking place in the
nucleus, probably related to the bar, and in a region 12 kpc South-West from
the centre. In the SW region we identify a starburst characterized by a 5x
increase in the star-formation rate over the last ~100 Myr, possibly related to
the compression of the interstellar gas by the ram pressure. The scenario
suggested by the observations is supported and refined by ad hoc
N-body/hydrodynamical simulations which identify a rather narrow temporal range
for the onset of ram-pressure stripping around t~60 Myr ago, and an angle
between the galaxy rotation axis and the intra-cluster medium wind of ~45 deg.
Taking into account that the galaxy is found ~1 Mpc from the cluster centre in
a relatively low-density region, this study shows that ram-pressure stripping
still acts efficiently on massive galaxies well outside the cluster cores.Comment: 46 pages, 21 figures, accepted for publication; MNRAS 201
Cosmic dance in the Shapley Concentration Core - I. A study of the radio emission of the BCGs and tailed radio galaxies
The Shapley Concentration () covers several degrees in the
Southern Hemisphere, and includes galaxy clusters in advanced evolutionary
stage, groups of clusters in the early stages of merger, fairly massive
clusters with ongoing accretion activity, and smaller groups located in
filaments in the regions between the main clusters. With the goal to
investigate the role of cluster mergers and accretion on the radio galaxy
population, we performed a multi-wavelength study of the BCGs and of the
galaxies showing extended radio emission in the cluster complexes of Abell 3528
and Abell 3558. Our study is based on a sample of 12 galaxies. We observed the
clusters with the GMRT at 235, 325 and 610 MHz, and with the VLA at 8.46 GHz.
We complemented our study with the TGSS at 150 MHz, the SUMSS at 843 MHz and
ATCA at 1380, 1400, 2380, and 4790 MHz data. Optical imaging with ESO-VST and
mid-IR coverage with WISE are also available for the host galaxies. We found
deep differences in the properties of the radio emission of the BCGs in the two
cluster complexes. The BCGs in the A3528 complex and in A3556, which are
relaxed cool-core objects, are powerful active radio galaxies. They also
present hints of restarted activity. On the contrary, the BCGs in A3558 and
A3562, which are well known merging systems, are very faint, or quiet, in the
radio band. The optical and IR properties of the galaxies are fairly similar in
the two complexes, showing all passive red galaxies. Our study shows remarkable
differences in the radio properties of the BGCs, which we relate to the
different dynamical state of the host cluster. On the contrary, the lack of
changes between such different environments in the optical band suggests that
the dynamical state of galaxy clusters does not affect the optical counterparts
of the radio galaxies, at least over the life-time of the radio emission.Comment: 24 pages, 11 figures, accepted for publication in Astronomy &
Astrophysic
The story of supernova 'Refsdal' told by MUSE
We present MUSE observations in the core of the HFF galaxy cluster MACS
J1149.5+2223, where the first magnified and spatially-resolved multiple images
of SN 'Refsdal' at redshift 1.489 were detected. Thanks to a DDT program with
the VLT and the extraordinary efficiency of MUSE, we measure 117 secure
redshifts with just 4.8 hours of total integration time on a single target
pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift
values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to 7
background, lensed sources distributed in redshifts between 1.240 and 3.703.
Starting from the combination of our catalog with those obtained from extensive
spectroscopic and photometric campaigns using the HST, we select a sample of
300 (164 spectroscopic and 136 photometric) cluster members, within
approximately 500 kpc from the BCG, and a set of 88 reliable multiple images
associated to 10 different background source galaxies and 18 distinct knots in
the spiral galaxy hosting SN 'Refsdal'. We exploit this valuable information to
build 6 detailed strong lensing models, the best of which reproduces the
observed positions of the multiple images with a rms offset of only 0.26". We
use these models to quantify the statistical and systematic errors on the
predicted values of magnification and time delay of the next emerging image of
SN 'Refsdal'. We find that its peak luminosity should should occur between
March and June 2016, and should be approximately 20% fainter than the dimmest
(S4) of the previously detected images but above the detection limit of the
planned HST/WFC3 follow-up. We present our two-dimensional reconstruction of
the cluster mass density distribution and of the SN 'Refsdal' host galaxy
surface brightness distribution. We outline the roadmap towards even better
strong lensing models with a synergetic MUSE and HST effort.Comment: 21 pages, 9 figures, 6 tables; accepted for publication in the
Astrophysical Journal - extra information on data analysis added, all model
predictions and results unchange
A highly-ionized region surrounding SN Refsdal revealed by MUSE
Supernova (SN) Refsdal is the first multiply-imaged, highly-magnified, and
spatially-resolved SN ever observed. The SN exploded in a highly-magnified
spiral galaxy at z=1.49 behind the Frontier Fields Cluster MACS1149, and
provides a unique opportunity to study the environment of SNe at high z. We
exploit the time delay between multiple images to determine the properties of
the SN and its environment, before, during, and after the SN exploded. We use
the integral-field spectrograph MUSE on the VLT to simultaneously target all
observed and model-predicted positions of SN Refsdal. We find MgII emission at
all positions of SN Refsdal, accompanied by weak FeII* emission at two
positions. The measured ratios of [OII] to MgII emission of 10-20 indicate a
high degree of ionization with low metallicity. Because the same high degree of
ionization is found in all images, and our spatial resolution is too coarse to
resolve the region of influence of SN Refsdal, we conclude that this high
degree of ionization has been produced by previous SNe or a young and hot
stellar population. We find no variability of the [OII] line over a period of
57 days. This suggests that there is no variation in the [OII] luminosity of
the SN over this period, or that the SN has a small contribution to the
integrated [OII] emission over the scale resolved by our observations.Comment: 5 pages, 4 figures, accepted for publication in A&
Numerical simulations challenged on the prediction of massive subhalo abundance in galaxy clusters: the case of Abell 2142
In this Letter we compare the abundance of member galaxies of a rich, nearby
() galaxy cluster, Abell 2142, with that of halos of comparable virial
mass extracted from sets of state-of-the-art numerical simulations, both
collisionless at different resolutions and with the inclusion of baryonic
physics in the form of cooling, star formation, and feedback by active galactic
nuclei. We also use two semi-analytical models to account for the presence of
orphan galaxies. The photometric and spectroscopic information, taken from the
Sloan Digital Sky Survey Data Release 12 (SDSS DR12) database, allows us to
estimate the stellar velocity dispersion of member galaxies of Abell 2142. This
quantity is used as proxy for the total mass of secure cluster members and is
properly compared with that of subhalos in simulations. We find that simulated
halos have a statistically significant ( sigma confidence level)
smaller amount of massive (circular velocity above )
subhalos, even before accounting for the possible incompleteness of
observations. These results corroborate the findings from a recent strong
lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416
\citep{grillo2015} and suggest that the observed difference is already present
at the level of dark matter (DM) subhalos and is not solved by introducing
baryonic physics. A deeper understanding of this discrepancy between
observations and simulations will provide valuable insights into the impact of
the physical properties of DM particles and the effect of baryons on the
formation and evolution of cosmological structures.Comment: 8 pages, 2 figures. Modified to match the version published in ApJ
Quantification of finite-temperature effects on adsorption geometries of -conjugated molecules
The adsorption structure of the molecular switch azobenzene on Ag(111) is
investigated by a combination of normal incidence x-ray standing waves and
dispersion-corrected density functional theory. The inclusion of non-local
collective substrate response (screening) in the dispersion correction improves
the description of dense monolayers of azobenzene, which exhibit a substantial
torsion of the molecule. Nevertheless, for a quantitative agreement with
experiment explicit consideration of the effect of vibrational mode
anharmonicity on the adsorption geometry is crucial.Comment: 12 pages, 3 figure
CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles
We use high-precision kinematic and lensing measurements of the total mass
profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at
to estimate the value of the ratio between the two scalar
potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker
metric.[...] Complementary kinematic and lensing mass profiles were derived
from exhaustive analyses using the data from the Cluster Lensing And Supernova
survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large
Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the
time-time part of the perturbed metric (i.e. only ), the lensing mass
profile reflects the contribution of both time-time and space-space components
(i.e. the sum ). We thus express as a function of the mass
profiles and perform our analysis over the radial range . Using a spherical Navarro-Frenk-White mass profile, which
well fits the data, we obtain at the
68\% C.L. We discuss the effect of assuming different functional forms for mass
profiles and of the orbit anisotropy in the kinematic reconstruction.
Interpreting this result within the well-studied modified gravity model,
the constraint on translates into an upper bound to the interaction
length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint
on the interaction range is however substantially relaxed when
systematic uncertainties in the analysis are considered. Our analysis
highlights the potential of this method to detect deviations from general
relativity, while calling for the need of further high-quality data on the
total mass distribution of clusters and improved control on systematic effects.Comment: 18 pages, 3 figures, submitted to JCA
Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones
In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol(-/-) embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol(-/-) mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphe nucleus and the trochlear motor nucleus are absent in mol(-/-) embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins
- …
