41 research outputs found
18F-Fluorination Using Tri-Tert-Butanol Ammonium Iodide as Phase-Transfer Catalyst: An Alternative Minimalist Approach
The 18F syntheses of tracers for positron emission tomography (PET) typically require several steps, including extraction of [18F]fluoride from H2[18O]O, elution, and drying, prior to nucleophilic substitution reaction, being a laborious and time-consuming process. The elution of [18F]fluoride is commonly achieved by phase transfer catalysts (PTC) in aqueous solution, which makes azeotropic drying indispensable. The ideal PTC is characterized by a slightly basic nature, its capacity to elute [18F]fluoride with anhydrous solvents, and its efficient complex formation with [18F]fluoride during subsequent labeling. Herein, we developed tri-(tert-butanol)-methylammonium iodide (TBMA-I), a quaternary ammonium salt serving as the PTC for 18F-fluorination reactions. The favorable elution efficiency of [18F]fluoride using TBMA-I was demonstrated with aprotic and protic solvents, maintaining high 18F-recoveries of 96–99%. 18F-labeling reactions using TBMA-I as PTC were studied with aliphatic 1,3-ditosylpropane and aryl pinacol boronate esters as precursors, providing 18F-labeled products in moderate-to-high radiochemical yields. TBMA-I revealed adequate properties for application to 18F-fluorination reactions and could be used for elution of [18F]fluoride with MeOH, omitting an additional base and azeotropic drying prior to 18F-labeling. We speculate that the tert-alcohol functionality of TBMA-I promotes intermolecular hydrogen bonding, which enhances the elution efficiency and stability of [18F]fluoride during nucleophilic 18F-fluorination
Synthesis of fluorosugar reagents for the construction of well-defined fluoroglycoproteins.
2-Deoxy-2-fluoroglycosyl iodides are privileged glycosyl donors for the stereoselective preparation of 1-Nu-β-fluorosugars, which are useful reagents for chemical site-selective protein glycosylation. Ready access to such β-fluorosugars enables the mild and efficient construction of well-defined fluoroglycoproteins.We thank the European Commission (Marie Curie CIG, O.B. and G.J.L.B.), MICINN, Spain (Juan de la Cierva Fellowship, O.B.), MINECO, Spain (CTQ2011-22872BQU) and Generalitat de Catalunya (M.S.) for generous financial support. We also thank Mr. Adrià Cardona-Benages (URV) for technical assis-tance. G.J.L.B. thanks the Royal Society (University Research Fellowship), Fundação para a Ciência a Tecnologia, Portugal (FCT Investigator), and the EPSRC for funding.This is the final version of the article. It first appeared from ACS via http://pubs.acs.org/doi/abs/10.1021/acs.orglett.5b01259
Misdiagnosis of narcolepsy
BACKGROUND: Narcolepsy is a chronic primary sleep disorder, characterized by excessive daytime sleepiness and sleep dysfunction with or without cataplexy. Narcolepsy is uncommon, with a low prevalence rate which makes it difficult to diagnose definitively without a complex series of tests and a detailed history. The aim of this study was to review patients referred to a tertiary sleep centre who had been labelled with a diagnosis of narcolepsy prior to referral in order to assess if the diagnosis was accurate, and if not, to determine the cause of diagnostic misattribution. METHODS: All patients seen at a sleep centre from 2007–2013 (n = 551) who underwent detailed objective testing including an MSLT PSG, as well as wearing an actigraphy watch and completing a sleep diary for 2 weeks, were assessed for a pre-referral and final diagnosis of narcolepsy. RESULTS: Of the 41 directly referred patients with a diagnostic label of narcolepsy, 19 (46 %) were subsequently confirmed to have narcolepsy on objective testing and assessment by a sleep physician using ICSD-2 criteria. CONCLUSIONS: The diagnosis of narcolepsy was incorrectly attributed to almost 50 % of patients labelled with a diagnosis of narcolepsy who were referred for further opinion by a variety of specialists and generalists. Accurate diagnosis of narcolepsy is critical for many reasons, such as the impact it has on quality of life, driving, employment, insurance and pregnancy in women as well as medication management
Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency
<p>Abstract</p> <p>Background</p> <p>Oxygen deficiency in tumor tissue is associated with a malign phenotype, characterized by high invasiveness, increased metastatic potential and poor prognosis. Hypoxia chambers are the established standard model for <it>in vitro </it>studies on tumor hypoxia. An enzymatic hypoxia system (GOX/CAT) based on the use of glucose oxidase (GOX) and catalase (CAT) that allows induction of stable hypoxia for <it>in vitro </it>approaches more rapidly and with less operating expense has been introduced recently. Aim of this work is to compare the enzymatic system with the established technique of hypoxia chamber in respect of gene expression, glucose metabolism and radioresistance, prior to its application for <it>in vitro </it>investigation of oxygen deficiency.</p> <p>Methods</p> <p>Human head and neck squamous cell carcinoma HNO97 cells were incubated under normoxic and hypoxic conditions using both hypoxia chamber and the enzymatic model. Gene expression was investigated using Agilent microarray chips and real time PCR analysis. <sup>14</sup>C-fluoro-deoxy-glucose uptake experiments were performed in order to evaluate cellular metabolism. Cell proliferation after photon irradiation was investigated for evaluation of radioresistance under normoxia and hypoxia using both a hypoxia chamber and the enzymatic system.</p> <p>Results</p> <p>The microarray analysis revealed a similar trend in the expression of known HIF-1 target genes between the two hypoxia systems for HNO97 cells. Quantitative RT-PCR demonstrated different kinetic patterns in the expression of carbonic anhydrase IX and lysyl oxidase, which might be due to the faster induction of hypoxia by the enzymatic system. <sup>14</sup>C-fluoro-deoxy-glucose uptake assays showed a higher glucose metabolism under hypoxic conditions, especially for the enzymatic system. Proliferation experiments after photon irradiation revealed increased survival rates for the enzymatic model compared to hypoxia chamber and normoxia, indicating enhanced resistance to irradiation. While the GOX/CAT system allows independent investigation of hypoxia and oxidative stress, care must be taken to prevent acidification during longer incubation.</p> <p>Conclusion</p> <p>The results of our study indicate that the enzymatic model can find application for <it>in vitro </it>investigation of tumor hypoxia, despite limitations that need to be considered in the experimental design.</p
Antiangiogenic Activity of 2-Deoxy-D-Glucose
During tumor angiogenesis, endothelial cells (ECs) are engaged in a number of energy consuming biological processes, such as proliferation, migration, and capillary formation. Since glucose uptake and metabolism are increased to meet this energy need, the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) on in vitro and in vivo angiogenesis were investigated.In cell culture, 2-DG inhibited EC growth, induced cytotoxicity, blocked migration, and inhibited actively forming but not established endothelial capillaries. Surprisingly, 2-DG was a better inhibitor of these EC properties than two more efficacious glycolytic inhibitors, 2-fluorodeoxy-D-glucose and oxamate. As an alternative to a glycolytic inhibitory mechanism, we considered 2-DG's ability to interfere with endothelial N-linked glycosylation. 2-DG's effects were reversed by mannose, an N-linked glycosylation precursor, and at relevant concentrations 2-DG also inhibited synthesis of the lipid linked oligosaccharide (LLO) N-glycosylation donor in a mannose-reversible manner. Inhibition of LLO synthesis activated the unfolded protein response (UPR), which resulted in induction of GADD153/CHOP and EC apoptosis (TUNEL assay). Thus, 2-DG's effects on ECs appeared primarily due to inhibition of LLOs synthesis, not glycolysis. 2-DG was then evaluated in two mouse models, inhibiting angiogenesis in both the matrigel plug assay and the LH(BETA)T(AG) transgenic retinoblastoma model.In conclusion, 2-DG inhibits endothelial cell angiogenesis in vitro and in vivo, at concentrations below those affecting tumor cells directly, most likely by interfering with N-linked glycosylation rather than glycolysis. Our data underscore the importance of glucose metabolism on neovascularization, and demonstrate a novel approach for anti-angiogenic strategies
N-glycosylation regulates intrinsic IFN-γ resistance in colorectal cancer: implications for immunotherapy
Background & Aims:
Advanced colorectal carcinoma (CRC) is characterized by a high frequency of primary immune evasion and refractoriness to immunotherapy. Given the importance of interferon (IFN)-γ in CRC immunosurveillance, we investigated whether and how acquired IFN-γ resistance in tumor cells would promote tumor growth, and whether IFN-γ sensitivity could be restored.
Methods:
Spontaneous and colitis-associated CRC development was induced in mice with a specific IFN-γ pathway inhibition in intestinal epithelial cells. The influence of IFN-γ pathway gene status and expression on survival was assessed in patients with CRC. The mechanisms underlying IFN-γ resistance were investigated in CRC cell lines.
Results:
The conditional knockout of the IFN-γ receptor in intestinal epithelial cells enhanced spontaneous and colitis-associated colon tumorigenesis in mice, and the loss of IFN-γ receptor α (IFNγRα) expression by tumor cells predicted poor prognosis in patients with CRC. IFNγRα expression was repressed in human CRC cells through changes in N-glycosylation, which decreased protein stability via proteasome-dependent degradation, inhibiting IFNγR-signaling. Downregulation of the bisecting N-acetylglucosaminyltransferase III (MGAT3) expression was associated with IFN-γ resistance in all IFN-γ–resistant cells, and highly correlated with low IFNγRα expression in CRC tissues. Both ectopic and pharmacological reconstitution of MGAT3 expression with all-trans retinoic acid increased bisecting N-glycosylation, as well as IFNγRα protein stability and signaling.
Conclusions:
Together, our results demonstrated that tumor-associated changes in N-glycosylation destabilize IFNγRα, causing IFN-γ resistance in CRC. IFN-γ sensitivity could be reestablished through the increase in MGAT3 expression, notably via all-trans retinoic acid treatment, providing new prospects for the treatment of immune-resistant CRC
Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial
Background
Results of small trials indicate that fluoxetine might improve functional outcomes after stroke. The FOCUS trial aimed to provide a precise estimate of these effects.
Methods
FOCUS was a pragmatic, multicentre, parallel group, double-blind, randomised, placebo-controlled trial done at 103 hospitals in the UK. Patients were eligible if they were aged 18 years or older, had a clinical stroke diagnosis, were enrolled and randomly assigned between 2 days and 15 days after onset, and had focal neurological deficits. Patients were randomly allocated fluoxetine 20 mg or matching placebo orally once daily for 6 months via a web-based system by use of a minimisation algorithm. The primary outcome was functional status, measured with the modified Rankin Scale (mRS), at 6 months. Patients, carers, health-care staff, and the trial team were masked to treatment allocation. Functional status was assessed at 6 months and 12 months after randomisation. Patients were analysed according to their treatment allocation. This trial is registered with the ISRCTN registry, number ISRCTN83290762.
Findings
Between Sept 10, 2012, and March 31, 2017, 3127 patients were recruited. 1564 patients were allocated fluoxetine and 1563 allocated placebo. mRS data at 6 months were available for 1553 (99·3%) patients in each treatment group. The distribution across mRS categories at 6 months was similar in the fluoxetine and placebo groups (common odds ratio adjusted for minimisation variables 0·951 [95% CI 0·839–1·079]; p=0·439). Patients allocated fluoxetine were less likely than those allocated placebo to develop new depression by 6 months (210 [13·43%] patients vs 269 [17·21%]; difference 3·78% [95% CI 1·26–6·30]; p=0·0033), but they had more bone fractures (45 [2·88%] vs 23 [1·47%]; difference 1·41% [95% CI 0·38–2·43]; p=0·0070). There were no significant differences in any other event at 6 or 12 months.
Interpretation
Fluoxetine 20 mg given daily for 6 months after acute stroke does not seem to improve functional outcomes. Although the treatment reduced the occurrence of depression, it increased the frequency of bone fractures. These results do not support the routine use of fluoxetine either for the prevention of post-stroke depression or to promote recovery of function.
Funding
UK Stroke Association and NIHR Health Technology Assessment Programme
Sweetening Pharmaceutical Radiochemistry by 18F-Fluoroglycosylation: Recent Progress and Future Prospects
In the field of 18F-chemistry for the development of radiopharmaceuticals for positron emission tomography (PET), various labeling strategies by the use of prosthetic groups have been implemented, including chemoselective 18F-labeling of biomolecules. Among those, chemoselective 18F-fluoroglycosylation methods focus on the sweetening of pharmaceutical radiochemistry by offering a highly valuable tool for the synthesis of 18F-glycoconjugates with suitable in vivo properties for PET imaging studies. A previous review covered the various 18F-fluoroglycosylation methods that were developed and applied as of 2014 (Maschauer and Prante, BioMed. Res. Int. 2014, 214748). This paper is an updated review, providing the recent progress in 18F-fluoroglycosylation reactions and the preclinical application of 18F-glycoconjugates, including small molecules, peptides, and high-molecular-weight proteins