124 research outputs found

    Developing a digital field notebook for bioscience students in higher education

    Get PDF
    Copyright \ua9 2023 Maddison, Bevan and Marsham. Introduction: The use of mobile device presents both benefits and barriers. However, studies into the use of technology in fieldwork often focus only on either practitioner views or student views. Digital field notebooks (DFNs) are one-way mobile devices can be used to enhance fieldwork. Yet their use is limited to Geography, Earth and Environmental Science (GEES) disciplines, with students often playing a passive role during the development of DFNs. This research reports on the development of a DFN to enhance bioscience fieldwork in Higher Education (HE). Methods: Using interviews, focus groups, and survey methods we investigated how both fieldwork practitioners and learners view the role of technology in the field. Working in partnership with students, we explored their experiences of using a DFN during fieldwork. Feedback was utilized to make changes to the DFN to support its integration within bioscience fieldwork. Results: Overall, valuable developments related to content, technology, and pedagogy were made to the DFN, identifying value in a co-creation process. For example, students suggested the role of the DFN as a collaborative tool where individual entries were collated together. A workflow schematic and case study are presented for how a DFN can be used during bioscience fieldwork in HE. Discussion: Although students identified place connection and the development of reflective practice as particular affordances, students did not identify any digital skill development opportunities when using the DFN. Additionally, although students suggested the DFN was easy to use, barriers remain for students in using a DFN. We suggest further research on the complex issues of permission and perceptions of value of mobile device use during fieldwork. Additionally, more explicit reference to digital skill developments should be made when using a DFN

    Moist convection and its upscale effects in simulations of the Indian monsoon with explicit and parametrised convection

    Get PDF
    In common with many global models, the Met Office Unified Model (MetUM) climate simulations show large errors in Indian summer monsoon rainfall, with a wet bias over the equatorial Indian Ocean, a dry bias over India, and with too weak low-level flow into India. The representation of moist convection is a dominant source of error in global models, where convection must be parametrised, with the errors growing quickly enough to affect both weather and climate simulations. Here we use the first multi- week continental-scale MetUM simulations over India, with grid-spacings that allow explicit convection, to examine how convective parametrisation contributes to model biases in the region. Some biases are improved in the convection-permitting simulations with more intense rainfall over India, a later peak in the diurnal cycle of convective rainfall over land, and a reduced positive rainfall bias over the Indian Ocean. The simulations suggest that the reduced rainfall over the Indian Ocean leads to an enhanced monsoon circulation and transport of moisture into India. Increases in latent heating associated with increased convection over land deepen the monsoon trough and enhance water vapour transport into the continent. In addition, delayed continental convection allows greater surface insolation and, along with the same rain falling in more intense bursts, generates a drier land surface. This increases land-sea temperature contrasts, and further enhances onshore flow. Changes in the low-level water vapour advection into India are dominated by these changes to the flow, rather than to the moisture content in the flow. The results demonstrate the need to improve the representations of convection over both land and oceans to improve simulations of the monsoon

    Identifying key controls on storm formation over the Lake Victoria Basin

    Get PDF
    The Lake Victoria region in East Africa is a hotspot for intense convective storms that are responsible for the deaths of thousands of fisherman each year. The processes responsible for the initiation, development and propagation of the storms are poorly understood and forecast skill is limited. Key processes for the lifecycle of two storms are investigated using Met Office Unified Model convection-permitting simulations with 1.5 km horizontal gridspacing. The two cases are analysed alongside a simulation of a period with no storms to assess the roles of the lake–land breeze, downslope mountain winds, prevailing large-scale winds and moisture availability. Whilst seasonal changes in large-scale moisture availability play a key role in storm development, the lake–land breeze circulation is a major control on the initiation location, timing and propagation of convection. In the dry season, opposing offshore winds form a bulge of moist air above the lake surface overnight that extends from the surface to ~1.5 km and may trigger storms in high CAPE/low CIN environments. Such a feature has not been explicitly observed or modelled in previous literature. Storms over land on the preceding day are shown to alter the local atmospheric moisture and circulation to promote storm formation over the lake. The variety of initiation processes and differing characteristics of just two storms analysed here show that the mean diurnal cycle over Lake Victoria alone is inadequate to fully understand storm formation. Knowledge of daily changes in local-scale moisture variability and circulations are key for skilful forecasts over the lake

    The effect of westerlies on East African rainfall and the associated role of tropical cyclones and the Madden–Julian Oscillation

    No full text
    Variability of rainfall in East Africa has major impacts on lives and livelihoods. From floods to droughts, this variability is important on short daily time‐scales to longer decadal time‐scales, as is apparent from the devastating effects of droughts in East Africa over recent decades. Past studies have highlighted the Congo airmass in enhancing East African rainfall. Our detailed analysis of the feature shows that days with a westerly moisture flow, bringing the Congo airmass, enhance rainfall by up to 100% above the daily mean, depending on the time of year. Conversely, there is a suppression of rainfall on days with a strong easterly flow. Days with a westerly moisture flux are in a minority in all seasons but we show that long rains with more westerly days are wetter, and that during the most‐recent decade which has had more frequent droughts (associated with the “Eastern African climate paradox”), there has been few days with such westerlies. We also investigate the influence of the Madden–Julian Oscillation (MJO) and tropical cyclones, and their interaction with the westerly flow. We show that days of westerly moisture flux are more likely during phases 3 and 4 of the MJO and when there are one or more tropical cyclones present. In addition, tropical cyclones are more likely to form during these phases of the MJO, and more likely to be coincident with westerlies when forming to the east of Madagascar. Overall, our analysis brings together many different processes that have been discussed in the literature but not yet considered in complete combination. The results demonstrate the importance of the Congo airmass on daily to climate time‐scales, and in doing so offers useful angles of investigation for future studies into prediction of East African rainfall

    Capturing convection essential for projections of climate change in African dust emission

    Get PDF
    The summertime Sahara and Sahel are the world’s largest source of airborne mineral dust. Cold-pool outflows from moist convection (‘haboobs’) are a dominant source of summertime uplift but are essentially missing in global models, raising major questions on the reliability of climate projections of dust and dust impacts. Here we use convection-permitting simulations of pan-African climate change, which explicitly capture haboobs, to investigate whether this key limitation of global models affects projections. We show that explicit convection is key to capturing the observed summertime maximum of dust-generating winds, which is missed with parameterised convection. Despite this, future climate changes in dust-generating winds are more sensitive to the effects of explicit convection on the wider meteorology than they are to the haboobs themselves, with model differences in the change in dust-generating winds reaching 60% of current values. The results therefore show the importance of improving convection in climate models for dust projections

    Impact of climate change on crop suitability in sub-Saharan Africa in parameterized and convection-permitting regional climate models

    Get PDF
    Due to high present-day temperatures and reliance on rainfed agriculture, sub-Saharan Africa is highly vulnerable to climate change. We use a comprehensive set of global (CMIP5) and regional (CORDEX-Africa) climate projections and a new convection-permitting pan-Africa simulation (and its parameterized counterpart) to examine changes in rainfall and temperature and the impact on crop suitability of maize, cassava and soybean in sub-Saharan Africa by 2100 (RCP8.5). This is the first time an explicit-convection simulation has been used to examine crop suitability in Africa. Increasing temperatures and declining rainfall led to large parts of sub-Saharan Africa becoming unsuitable for multiple staple crops, which may necessitate a transition to more heat and drought resistant crops to ensure food and nutrition security. Soybean was resilient to temperature increases, however maize and cassava were not, leading to declines in crop suitability. Inclusion of sensitivity to extreme temperatures led to larger declines in maize suitability than when this was excluded. The results were explored in detail for Tanzania, Malawi, Zambia and South Africa. In each country the range of projections included wetting and drying, but the majority of models projected rainfall declines leading to declines in crop suitability, except in Tanzania. Explicit-convection was associated with more high temperature extremes, but had little systematic impact on average temperature and total rainfall, and the resulting suitability analysis. Global model uncertainty, rather than convection parameterizations, still makes up the largest part of the uncertainty in future climate. Explicit-convection may have more impact if suitability included a more comprehensive treatment of extremes. This work highlights the key uncertainty from global climate projections for crop suitability projections, and the need for improved information on sensitivities of African crops to extremes, in order to give better predictions and make better use of the new generation of explicit-convection models
    • 

    corecore