600 research outputs found
EEG Source Imaging Indices of Cognitive Control Show Associations with Dopamine System Genes.
Cognitive or executive control is a critical mental ability, an important marker of mental illness, and among the most heritable of neurocognitive traits. Two candidate genes, catechol-O-methyltransferase (COMT) and DRD4, which both have a roles in the regulation of cortical dopamine, have been consistently associated with cognitive control. Here, we predicted that individuals with the COMT Met/Met allele would show improved response execution and inhibition as indexed by event-related potentials in a Go/NoGo task, while individuals with the DRD4 7-repeat allele would show impaired brain activity. We used independent component analysis (ICA) to separate brain source processes contributing to high-density EEG scalp signals recorded during the task. As expected, individuals with the DRD4 7-repeat polymorphism had reduced parietal P3 source and scalp responses to response (Go) compared to those without the 7-repeat. Contrary to our expectation, the COMT homozygous Met allele was associated with a smaller frontal P3 source and scalp response to response-inhibition (NoGo) stimuli, suggesting that while more dopamine in frontal cortical areas has advantages in some tasks, it may also compromise response inhibition function. An interaction effect emerged for P3 source responses to Go stimuli. These were reduced in those with both the 7-repeat DRD4 allele and either the COMT Val/Val or the Met/Met homozygous polymorphisms but not in those with the heterozygous Val/Met polymorphism. This epistatic interaction between DRD4 and COMT replicates findings that too little or too much dopamine impairs cognitive control. The anatomic and functional separated maximally independent cortical EEG sources proved more informative than scalp channel measures for genetic studies of brain function and thus better elucidate the complex mechanisms in psychiatric illness
EEG Source Imaging Indices of Cognitive Control Show Associations with Dopamine System Genes
Cognitive or executive control is a critical mental ability, an important marker of mental illness, and among the most heritable of neurocognitive traits. Two candidate genes, catechol-O-methyltransferase (COMT) and DRD4, which both have a roles in the regulation of cortical dopamine, have been consistently associated with cognitive control. Here, we predicted that individuals with the COMT Met/Met allele would show improved response execution and inhibition as indexed by event-related potentials in a Go/NoGo task, while individuals with the DRD4 7-repeat allele would show impaired brain activity. We used independent component analysis (ICA) to separate brain source processes contributing to high-density EEG scalp signals recorded during the task. As expected, individuals with the DRD4 7-repeat polymorphism had reduced parietal P3 source and scalp responses to response (Go) compared to those without the 7-repeat. Contrary to our expectation, the COMT homozygous Met allele was associated with a smaller frontal P3 source and scalp response to response-inhibition (NoGo) stimuli, suggesting that while more dopamine in frontal cortical areas has advantages in some tasks, it may also compromise response inhibition function. An interaction effect emerged for P3 source responses to Go stimuli. These were reduced in those with both the 7-repeat DRD4 allele and either the COMT Val/Val or the Met/Met homozygous polymorphisms but not in those with the heterozygous Val/Met polymorphism. This epistatic interaction between DRD4 and COMT replicates findings that too little or too much dopamine impairs cognitive control. The anatomic and functional separated maximally independent cortical EEG sources proved more informative than scalp channel measures for genetic studies of brain function and thus better elucidate the complex mechanisms in psychiatric illness
EEG windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts
EEG recordings are usually corrupted by spurious extra-cerebral artifacts,
which should be rejected or cleaned up by the practitioner. Since manual
screening of human EEGs is inherently error prone and might induce
experimental bias, automatic artifact detection is an issue of importance.
Automatic artifact detection is the best guarantee for objective and clean results.
We present a new approach, based on the time–frequency shape of muscular
artifacts, to achieve reliable and automatic scoring. The impact of muscular
activity on the signal can be evaluated using this methodology by placing
emphasis on the analysis of EEG activity. The method is used to discriminate
evoked potentials from several types of recorded muscular artifacts—with a
sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata
are then successfully realized using this method, combined with independent
component analysis. The outcome of the automatic cleaning is then compared
with the Slepian multitaper spectrum based technique introduced by Delorme
et al (2007 Neuroimage 34 1443–9)
Tracing the Flow of Perceptual Features in an Algorithmic Brain Network
The model of the brain as an information processing machine is a profound hypothesis in which neuroscience, psychology and theory of computation are now deeply rooted. Modern neuroscience aims to model the brain as a network of densely interconnected functional nodes. However, to model the dynamic information processing mechanisms of perception and cognition, it is imperative to understand brain networks at an algorithmic level–i.e. as the information flow that network nodes code and communicate. Here, using innovative methods (Directed Feature Information), we reconstructed examples of possible algorithmic brain networks that code and communicate the specific features underlying two distinct perceptions of the same ambiguous picture. In each observer, we identified a network architecture comprising one occipito-temporal hub where the features underlying both perceptual decisions dynamically converge. Our focus on detailed information flow represents an important step towards a new brain algorithmics to model the mechanisms of perception and cognition
Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.
Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation
The invisible maze task (IMT): Interactive exploration of sparse virtual environments to investigate action-driven formation of spatial representations
© Springer Nature Switzerland AG 2018. The neuroscientific study of human navigation has been constrained by the prerequisite of traditional brain imaging studies that require participants to remain stationary. Such imaging approaches neglect a central component that characterizes navigation - the multisensory experience of self-movement. Navigation by active movement through space combines multisensory perception with internally generated self-motion cues. We investigated the spatial microgenesis during free ambulatory exploration of interactive sparse virtual environments using motion capture synchronized to high resolution electroencephalographic (EEG) data as well AS psychometric and self-report measures. In such environments, map-like allocentric representations must be constructed out of transient, egocentric first-person perspective 3-D spatial information. Considering individual differences of spatial learning ability, we studied if changes in exploration behavior coincide with spatial learning of an environment. To this end, we analyzed the quality of sketch maps (a description of spatial learning) that were produced after repeated learning trials for differently complex maze environments. We observed significant changes in active exploration behavior from the first to the last exploration of a maze: a decrease in time spent in the maze predicted an increase in subsequent sketch map quality. Furthermore, individual differences in spatial abilities as well as differences in the level of experienced immersion had an impact on the quality of spatial learning. Our results demonstrate converging evidence of observable behavioral changes associated with spatial learning in a framework that allows the study of cortical dynamics of navigation
Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement
Motor imagery-based brain–computer interface (MI-BCI) has been proposed as a rehabilitation tool to facilitate motor recovery in stroke. However, the calibration of a BCI system is a time-consuming and fatiguing process for stroke patients, which leaves reduced time for actual therapeutic interaction. Studies have shown that passive movement (PM) (i.e., the execution of a movement by an external agency without any voluntary motions) and motor imagery (MI) (i.e., the mental rehearsal of a movement without any activation of the muscles) induce similar EEG patterns over the motor cortex. Since performing PM is less fatiguing for the patients, this paper investigates the effectiveness of calibrating MI-BCIs from PM for stroke subjects in terms of classification accuracy. For this purpose, a new adaptive algorithm called filter bank data space adaptation (FB-DSA) is proposed. The FB-DSA algorithm linearly transforms the band-pass-filtered MI data such that the distribution difference between the MI and PM data is minimized. The effectiveness of the proposed algorithm is evaluated by an offline study on data collected from 16 healthy subjects and 6 stroke patients. The results show that the proposed FB-DSA algorithm significantly improved the classification accuracies of the PM and MI calibrated models (p < 0.05). According to the obtained classification accuracies, the PM calibrated models that were adapted using the proposed FB-DSA algorithm outperformed the MI calibrated models by an average of 2.3 and 4.5 % for the healthy and stroke subjects respectively. In addition, our results suggest that the disparity between MI and PM could be stronger in the stroke patients compared to the healthy subjects, and there would be thus an increased need to use the proposed FB-DSA algorithm in BCI-based stroke rehabilitation calibrated from PM
Familiarity with speech affects cortical processing of auditory distance cues and increases acuity
Several acoustic cues contribute to auditory distance estimation. Nonacoustic cues, including familiarity, may also play a role. We tested participants' ability to distinguish the distances of acoustically similar sounds that differed in familiarity. Participants were better able to judge the distances of familiar sounds. Electroencephalographic (EEG) recordings collected while participants performed this auditory distance judgment task revealed that several cortical regions responded in different ways depending on sound familiarity. Surprisingly, these differences were observed in auditory cortical regions as well as other cortical regions distributed throughout both hemispheres. These data suggest that learning about subtle, distance-dependent variations in complex speech sounds involves processing in a broad cortical network that contributes both to speech recognition and to how spatial information is extracted from speech. © 2012 Wisniewski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
- …
