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Abstract. The CICAAR algorithm (convolutive independent compo-
nent analysis with an auto-regressive inverse model) allows separation
of white (i.i.d) source signals from convolutive mixtures. We introduce a
source color model as a simple extension to the CICAAR which allows
for a more parsimoneous representation in many practical mixtures. The
new filter-CICAAR allows Bayesian model selection and can help answer
questions like: ’Are we actually dealing with a convolutive mixture?’. We
try to answer this question for EEG data.

1 Introduction

Convolutive ICA (CICA) is a topic of high current interest and several schemes
are now available for recovering mixing matrices and sources signals from con-
volutive mixtures, see e.g., [4]. Convolutive models are more complex than con-
ventional instantaneous models, hence, the issue of model optimization is im-
portant. Convolutive ICA in its basic form concerns reconstruction of the L+1
mixing matrices Aτ and the N source signal vectors st of dimension K, from a
D-dimensional convolutive mixture

xt =
L∑

τ=0

Aτst−τ (1)

Here we focus, for simplicity, on the case where the number of sources equals
the number of sensors, D = K.

We have earlier proposed the CICAAR approach for convolutive ICA [3] as a
generalization of Infomax [2] to convolutive mixtures. The CICAAR exploits the
relatively simple structure of the un-mixing system resulting when the inverse
mixing is represented as an autoregressive process. In the original derivation we
were forced to assume white (i.d.d) sources, i.e., that all temporal correlation in
the mixture signals appeared through the convolutive mixing process. A more
economic representation is obtained, however, if we explicitly introduce filters to
represent possible auto-correlation of sources. This added degree of freedom also
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(a) Source color filters, M = 15.
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(b) Convolutive mixing system, L = 10.

Fig. 1. Filters for generating synthetic data. First, two i.i.d. signals are colored through
their respective filters (a). Then, the colored signals are convolutively mixed using a
distinct filter for each source-sensor path (b).

carries another benefit, it allows for optimizing the model structure: How much
correlation should be accounted for by the source filters, and how much should
be accounted for by the convolutive mixture? Explicit source auto-correlation
modeling using filtered white noise has been proposed earlier by several authors,
see e.g., [1, 7, 8].

2 Modelling convolutive ICA with auto-correlated
sources

We introduce a model for each of the sources

sk(t) =
M∑

λ=0

hk(λ)zk(t− λ) (2)

where zk(t) represents a whitened version of the source signal. The negative log
likelihood for the model combining (1) and (2) is given by

L = N log | detA0|+ N
∑

k

log |hk(0)| −
N∑

t=1

log p(ẑt) (3)

where ẑt is a vector of whitened source signal estimates at time t using an
operator that represents the inverse of (2). We can without loss of generality set
hk(0) = 1, then

L = N log |detA0| −
N∑

t=1

log p(ẑt) (4)

The number of parameters in this model is D2(L+1)+DM , and it can thus be
minimized if M is increased so as to explain the source auto-correlations allowing
L to be reduced in return. An algorithm for convolutive ICA which includes the
source model can be derived by making a relative straight forward modification
to the equations of the CICAAR algorithm found in [3], see appendix A.
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(a) Generating model (L, M) = (10, 15)
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(b) Estimated by algorithm (L, M) =
(10, 15)
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(c) Estimated by algorithm (L, M) = (5, 20)
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(d) BIC optimal is (L, M) = (5, 20).

Fig. 2. Mixing filters convolved with respective color filters. (a) for the generating
model. (b) for an estimated model with the ’true’ L and M . (c) for the Bayes optimal
model with (L, M) = (5, 20). (d) shows the BIC for various models, and (L,M)=(5,20)
is found optimal.

3 Model Selection Protocol

Let M represent a specific choice of model structure (L, M). The Bayes Infor-
mation Criterion (BIC) is given by log p(M|X) ≈ log p(X|θθθ0,M)−dimθθθ

2 log N
where dimθθθ is the number of parameters in the model, and θθθ0 are the maximum
likelihood parameters [9].

We propose a simple protocol for the dimensions (L,M) of the convolutional-
and source-filters. First, expand the convolution length L without a source model
(i.e. keeping M = 0). This will model the total temporal dependency structure
of the system. The optimal L, denote it Lmax, is found by monitoring BIC. Next,
expand the dimensions M of the source model filters while keeping the temporal
dependency constant, i.e. keeping (L + M) = Lmax.

3.1 Simulation example

The first experiment is designed to illustrate the protocol for determining the
dimensions of the convolution and the source filters. We create a 2 × 2 system
with known source filters M = 15 and known convolution L = 10. . .
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Fig. 3. Learning curves for three models: The generating model (L, M) = (10, 15), a
model with (L, M) = (25, 0) which is more complex but fully capable of ‘imitating’ the
first model, and the model (L, M) = (5, 20) which was found Bayes optimal according
to BIC. The generalization error is estimated as the likelihood of a test set (Ntest =
300000). The uniform improvements in generalization of the ‘optimal model’ further
underlines the importance of model selection in the context

Data — Two signals are generated by filtering temporally white signals using
the filters shown on Figure-1(a). The signals are then mixed using the 2×2×10
system shown on Figure-1(b). The generating model has thus (L,M) = (10, 15).

Result — First we note, the model is in itself ambiguous; an arbitrary filter can
be applied to a color filter if the inverse filter is applied to the respective column
of mixing filters. Therefore, to compare results we inspect the system as a whole,
i.e. source color convolved with a column of mixing filters.

Figure-2 displays convolutive mixing systems where each mixing channel has
been convolved with the respective color filter; (a) for the true generating model;
(b) a run with the algorithm using N = 300000 training samples and using the
(L,M) of the generating model. The result is perfect up to sign and scaling
ICA ambiguities; (c) shows a run with the algorithm using N = 100000 and the
Bayes optimal choice of (L,M) = (5, 20) c.f. (d), in the finite data the protocol
has found a parsimonious model with similar overall transfer function. We first
study the learning curves, i.e., how does the training set dimension N , influence
learning. We use the likelihood evaluated on a test set to measure the learning of
different models. We now compare learning curves for three models; one which
is the generating model (L, M) = (10, 15), one (L, M) = (25, 0) which is more
complex but fully capable of imitating the first model, and (L,M) = (5, 20)
which is optimal according to BIC. Figure-3 shows learning curves of the three
models, the test set is Ntest = 300000 samples. The uniform improvements in
generalization of the ‘optimal model’ further underlines the importance of model
selection in the context of convolutive mixing.



3.2 Rejecting convolution in an instantaneous mixture

We will now illustrate the importance of the source color filters when dealing with
the following fundamental question: ’Do we learn anything by using Convolutive
ICA instead of instantaneous ICA?’—or put in another way: ’should L be larger
than zero?’.

Data — To produce an instantaneous mixture we now mix the two colored
sources from before using a random matrix.

Result — Figure-4(a) shows the result of using Bayesian model selection without
allowing for a filter (M = 0). This corresponds to model selection in a conven-
tional convolutive model. Since the signals are non-white L is detected and the
model BIC simply increases as function of L up to the maximum which is at-
tained at a value of L = 15. Next, in Figure-4(b) we fix L + M = 15. Models
with a greater L have at least the same capability as a model with a lower L;
but as expected lower L are preferable because the models has fewer parameters.
Thus, thanks to the filters, we now get the correct answer: ’There is no evidence
of convolutive ICA’.
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Fig. 4. (a) the result of using Bayesian model selection without allowing for a filter
(M = 0). Since the signals are non-white L is detected at a value of L = 15. (b) we
fix L + M = 15, and now get the correct answer: L = 0 — ’There is no evidence of
convolutive ICA’.

4 Is convolutive ICA relevant for EEG?

The EEG signals from the entire brain superimpose onto every EEG electrode
instantaneously; there are no delays or echoes, hence, the mixing of the electro-
magnetic activity is definitely not a convolutive process. However, the question
is whether the convolutive mixing model is relevant as a model for the brain



activity itself. It is well known that EEG activity exhibits rich spatio-temporal
dynamics and that different tasks of the brain combine different regions in differ-
ent frequency bands, and so, we expect the Bayes optimal model to potentially
include some convolutive mixing L > 0.

Data — 20 minutes of a 71-channel human EEG recording downsampled to a 50-
Hz sampling rate after filtering between 1 and 25 Hz with phase-indifferent FIR
filters. First, the recorded (channels-by-times) data matrix (X) was decomposed
using extended infomax ICA [2, 5] into 71 maximally independent components
whose (’activation’) time series were contained in (components-by-times) ma-
trix SICA and whose (’scalp map’) projections to the sensors were specified in
(channels-by-components) mixing matrix AICA, assuming instantaneous linear
mixing X = AICASICA. Three of the resulting independent components were
selected for further analysis on the basis of event-related coherence results that
showed a transient partial collapse of component independence following the sub-
ject button presses [6]. Their scalp maps (the relevant three columns of AICA)
are shown on Figure 5(a).

Convolutive ICA analysis — Next, convolutive ICA decomposition was applied
to the three component activation time series (relevant three rows of SICA) which
we shall refer to as channels ch1, ch2 and ch3. Following our proposed protocol,
we find Lmax = 110, then L = 9 as shown on Figure-5(c) — so, we are in fact
dealing with a convolutive mixture. Figure-5(b) shows, for one of the resulting
convolutive ICA components, cross correlation functions between its contribution
to the channels (with each a scalp map associated). Clearly, there are delayed
correlation between the different brain regions, and this is not possible to model
with an instantaneous ICA model, hence the need for convolutive mixing.
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Fig. 5. (a) Scalp maps for the three ICA components. (b) for one of the resulting
convolutive ICA components, cross correlation functions between its contribution to
the channels. (c) Finding L = 9 for the EEG data.



5 Conclusion

We have incorporated filters for modelling possible source auto-correlations into
an existing algorithm for convolutive ICA. We have proposed a protocol for
determining the dimension L of a convolutive mixture utilizing the filters. We
have shown that convolutive ICA is relevant for real EEG data.

Appendix A: Source modeling with the CICAAR
algorithm

For notational convenience we introduce the following matrix notation instead
of (2), handling all sources in one matrix equation

st =
M∑

λ=0

Hλzt−λ (5)

where the Hλ’s are diagonal matrices defined by (Hλ)ii = hi(λ).
Given a current estimate of the mixing matrices Aτ and the source filter

coefficients hk(λ), First apply equation 7 of [3] to obtain ŝt. Then apply the
inverse source coloring operator

ẑt = ŝt −
M∑

λ=1

Hλẑt−λ (6)

which must replace ŝt in [3] (in equations 6,8,9 and 11). This involves the fol-
lowing partial derivatives which in turn uses the result from [3] (from equations
7,10,12)

∂(ẑt)k

∂(Bτ )ij
=

∂(̂st)k

∂(Bτ )ij
−

M∑

λ=1

Hλ
∂(ẑt−λ)k

∂(Bτ )ij
(7)

where Bτ = Aτ for τ > 0 and B0 = A−1
0 . Furthermore

∂(ẑt)k

∂(Hλ)ii
= −δ(k − i)(ẑt−λ)i −

(
M∑

λ′=1

Hλ′
∂ẑt−λ′

∂(Hλ)ii

)

k

(8)

The work involved in this plug-in is minimal due to the diagonal structure of
the Hλ matrices. Finally,

∂L
∂(Hλ)ii

= −
N∑

t=1

ψψψT
t

∂ẑt

∂(Hλ)ii
(9)

where (ψψψt)k = p′((ẑt)k)/p((ẑt)k).
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