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Abstract

EEG recordings are usually corrupted by spurious extra-cerebral artifacts,
which should be rejected or cleaned up by the practitioner. Since manual
screening of human EEGs is inherently error prone and might induce
experimental bias, automatic artifact detection is an issue of importance.
Automatic artifact detection is the best guarantee for objective and clean results.
We present a new approach, based on the time–frequency shape of muscular
artifacts, to achieve reliable and automatic scoring. The impact of muscular
activity on the signal can be evaluated using this methodology by placing
emphasis on the analysis of EEG activity. The method is used to discriminate
evoked potentials from several types of recorded muscular artifacts—with a
sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning of EEG data
are then successfully realized using this method, combined with independent
component analysis. The outcome of the automatic cleaning is then compared
with the Slepian multitaper spectrum based technique introduced by Delorme
et al (2007 Neuroimage 34 1443–9).

Keywords: electroencephalography, artifact, bioelectric potentials, wavelet
transforms, noise, signal analysis, signal processing

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Artifacts in the EEG can be defined as any potential difference due to an extra-cerebral3 source
(Anderer et al 1999). In addition to instrument and environmental electrical 50/60 Hz noise
3 Nota bene: retina belongs to the central nervous system. Eye movements, as will be detailed later on, can induce
retinal potentials that could be considered as cerebral activity. Nevertheless, electrooculographic artifacts in general
will be considered as ‘muscular artifacts’ for the sake of simplicity in this paper.
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and movement artifacts, ocular, electromyographic (EMG), electrodermal, electrovascular and
respiratory signals can interfere with the EEG in the form of artifacts. Muscle artifacts are
especially problematic, because they can appear in patterns similar to that of true EEG signals;
the frequency range of muscle artifacts and the investigated EEG waveforms overlap to a
high degree (van de Velde 2000). EEG analysis is therefore greatly impaired by the presence
of such muscle artifacts. The importance of artifact detection, either for rejecting corrupted
signals or for applying subsequent denoising methods, has already been emphasized. However,
since human intervention may be subjective, inconsistent and thus is less reliable, automatic
methods are preferable to guide manual rejection. For instance, epoch-by-epoch agreement
of the sleep-stage assignment task was extremely inconsistent among five experienced sleep
technologists from different laboratories (Norman et al 2000)—which means that human
recognition consistency, for known EEG patterns4, is low. In this study, mean agreement was
only 73%, and depended on the laboratory.

Automatic detection of artifacts is necessary when EEG activity above 20 Hz is studied
(Whitham et al 2007) but is also generally necessary to avoid experimenter bias. Automatic
methods are usually based on threshold techniques for EEG potentials or power spectra
(Durka et al 2003), regression-based models (Moretti et al 2003), or projection-based methods
(Wallstrom et al 2004). Independent component analysis (ICA) is especially useful (Ille et al
2002), exploiting statistical-independent criteria to separate artifacts (Jung et al 2000).
Automatic criteria have been proposed (Delorme et al 2001) for semi-automatic artifact
rejection. However, despite the advantages of ICA, potentially laborious manual identification
of components to be removed is still needed to obtain a reliable result. Instead of exploiting
time values of frequency spectra, (Zikov et al 2002) demonstrated wavelet joint time–
frequency representations to be useful for EEG ocular artifact denoising. Using appropriate
normalization, the so-called ‘z-score’ can enhance the precision of wavelet time–frequency
maps, resulting in efficient artifact detection (Browne and Cutmore 2004).

However, most of the studies concerning automatic detection of artifacts use either
databases screened by humans or databases of EEG signals containing added ‘artificial’ noise.
Unfortunately, the algorithms developed under these conditions use the error-prone human
performance as a reference! Human judgment having low reliability, the best way to asses the
validity of the database used for testing, would be to use real artifacts generated in a controlled
study, instead of artificial data. For instance, neural networks with wavelet preprocessing
(Ksieżyk et al 1998) achieved a sensitivity of 80% and a specificity of 75%, ICA and Bayesian
classification (LeVan et al 2006) achieved a sensitivity of 87.6% and a specificity of 70.2%,
and the extraction of time and frequency characteristics (van de Velde et al 1998) achieved a
specificity of 90% and a sensitivity of 80%. Except for the last study, these rates are rather
poor, especially if one considers that the true class in which the signals belong is uncertain
(i.e., artifacts were classified by human scorers, whose reliability is low (Norman et al 2000)).
One must take into account the fact that results usually depend on analysis of the signal by
epochs, and that these epoch-length characteristics are not always consistent from one study
to another.

An EEG evoked potential and, more generally, event-related potentials are electrical
potential recorded in one or more EEG channels following the presentation of a stimulus, as
distinct from spontaneous potentials (the background EEG). They can be interpreted as the
reorganization of the spontaneous brain oscillations in response to the stimulus (Başar 1980,
Başar et al 1999). EP (especially visual EP) were observed in several studies to have visible

4 Unfortunately, to the best of our knowledge, no such comparison for artifact rejection is reported. Note that the
complexity of EMG artifact detection is comparable to the complexity of sleep staging (especially for low-amplitude
artifacts).
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outcomes even in single trials (see, e.g., Effern et al 2000, Quiroga et al 2001), especially
observable when using wavelets (Başar et al 1999, Quiroga et al 2001) who represent the
signal with optimal time–frequency resolutions. Despite the usual method to observe EP is
based on signal averaging, it does not mean that single trials do not contain the stimulus
evoked activity: averaging is only used to enhance an activity that is already present (even if
weak as compared to the background EEG) in single trials. Hence, threshold-based methods
of artifact rejection can be expected to reject evoked activity. This can be a serious flaw, if
one attempt to clean EEG signals using ICA (especially in the high-frequency ranges): if one
removes parts or portions of evoked activity in single trials, the resultant averaged signal is not
a proper representation of the brain activity. Many reports do not take into account the impact
of artifact rejection on evoked potentials, which may dramatically impair the EEG analysis
(Stecker 2002).

We present here an approach to analyze corrupted EEG signals. Artifact cleaning methods
are usually based on the estimate of a rejection threshold. Whereas rejection thresholds are
usually determined using rest EEG, we determined our rejection threshold using EEG recorded
during stimulation: our aim was to remove EMG artifacts while preserving event-related
potentials. During EEG recordings, muscle artifacts were experimentally evoked and were
compared to signals obtained from audio–visual stimulation. The proposed method exploits
only EEG signals; it is unnecessary to record the electrooculogram (EOG) signal itself. The
approach is developed for a wide variety of muscle artifacts, ranging from eye artifacts to head,
jaw or body movements. We exploit time–frequency characteristics of EEG signals to define
the optimal length of epochs to be analyzed. A score for each signal is returned, allowing one
to either discard noisy signals or to clean them up using an appropriate technique (such as
ICA).

2. Description and general observations

EEG signals were acquired using a 64 channel EEG system (sampling rate 1 kHz, gain 1000×).
The high sampling rate is necessary for the analysis of high-frequency contents of the signal
(the sampling rate should be three to five times the maximal frequency investigated, (Barlow
1993)). The subject was asked to voluntarily produce individual muscle artifacts (ten trials
per artifact). Ten different muscle artifacts were produced:

(i) blink left eye,
(ii) blink right eye,

(iii) blink both eyes,
(iv) look from left to right (eye-movement artifact),
(v) roll eyes clockwise,

(vi) speak (say ‘kampai’),
(vii) swallow some water,

(viii) move head (nodding, first down then up),
(ix) grind teeth on chewing gum, three times,
(x) stand up 30% of a full standing position and then sit down again.

Thus, the database consisted of 100 recordings (ten trials for ten artifacts). We recorded
transient EP, that can be elicited using either step or impulse functions at the input of the
nervous system (Başar et al 1999). The subject was exposed simultaneously to a 2000 Hz
audio tone (duration: 30 ms) and a pattern offset/onset visual stimulus (a 600 × 600 pixel
checkerboard image displayed on a 32 × 25 cm LCD screen located 30 cm from the subject’s
nasion; duration: 10 ms), while EEGs were recorded. Both sound and images are presented
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to the subject, so that the EEG will record simultaneously evoked potentials in the visual
and auditory areas (usually occipital and temporal areas) together with their multimodal
interactions. The EEG signal was recorded before, during and after this stimulation (recording
duration = 10 s). Twenty five trials were recorded. We do not intend to study the averaged
signal but single trials (the motivation is to clean single trials before averaging, so that evoked
potentials would be less distorted by EMG artifacts).

2.1. Different muscle artifacts, different properties

Here, we present general descriptions of the mechanisms that cause EMG artifacts in EEG
recordings. A complete review of EEG artifacts is detailed in Benbadis and Rielo (2005).

The eyeball acts as a dipole, with an anteriorly oriented positive pole (cornea) and a
posteriorly oriented negative pole (retina). Ocular globe rotation about its axis (for instance,
eye movement or eye rolling) generates a large-amplitude alternate current field that is recorded
by EEG scalp electrodes. In addition, movements of the eyelids have a shunting effect on
the corneal–retinal dipole. Hence, eye blinks also induce EEG perturbations. Myogenic
potentials are induced by muscular activity, e.g., during body or head movements. Frontalis
and temporalis muscles, which contract during teeth grinding or clenching of jaw muscles,
especially induce strong EMG artifacts. Like the eyeball, the tongue is also a dipole, with a
negative tip and a positive base that produces a so-called glossokinetic artifact. The tip of the
tongue is the most important part of the tongue because it is more mobile than the base of the
tongue. Not only chewing, sucking and swallowing can produce EEG artifacts but speaking See endnote 1

can also produce artifacts.

2.2. Different muscle artifacts, different frequency spectra

Figure 1 presents the Fourier spectrum of each kind of artifact (absolute log Fourier power,
single 2 s window centered on the artifact averaged for all trials). Even though muscle artifacts
are commonly considered to primarily affect high frequencies in the EEG, low-frequency
activity of the EEG is also strongly distorted by artifacts (Zimmermann and Sharein 2004,
Freeman et al 2003). Because high frequencies have lower EEG power than low frequencies,
whereas EMG power is of similar order in both high and low frequencies, the ‘signal-to-
EMG’ ratio for high frequencies is poorer than that of low frequencies. Thus, depending on
the type of artifact, the spectrum elicited may have specific responses in four frequency bands:
δ � α = 1–10 Hz, α � β = 10–35 Hz, γ = 60–90 Hz, and λ > 90 Hz.

2.3. Different muscle artifacts, different scalp repartition

Figure 2 presents the QEEG (quantitative EEG) distributions of different muscle EEG artifacts.
Each artifact was analyzed by using the dB power of the Fourier transform in the 10–90 Hz
frequency range, after baseline removal. We observed specific spatial distributions, which we
will use later on to identify the artifacts.

3. Methods

3.1. Wavelet transformation and time–frequency map generation

Wavelets (see Mallat (1997) for details), especially complex Morlet wavelets (Kronland-
Martinet et al 1988), have already been widely used for time–frequency analysis of EEG
signals (Tallon-Baudry et al 1996, Düzel et al 2003, Caplan et al 2001, Li et al 2007, Slobounov
et al 2008). Complex Morlet wavelets w(t) of the Gaussian shape in time (deviation σ ) are



EEG statistical wavelet scoring for muscular artifacts 5

0 20 40 60 80 100 120
1

1.2

1.4

1.6

1.8

2

2.2

2.4
Eye blink artifact Fourier spectrum

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(a)

0 20 40 60 80 100 120
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(b)

0 20 40 60 80 100 120
1

1.2

1.4

1.6

1.8

2

2.2

2.4
Eye roll artifact Fourier spectrum

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(c)

0 20 40 60 80 100 120
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
grind artifact Fourier spectrum, temporal electrode

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(d)

0 20 40 60 80 100 120
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
nodding artifact Fourier spectrum, occipital electrode

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(e)

0 20 40 60 80 100 120

1.4

1.6

1.8

2

2.2

2.4

2.6
speak artifact Fourier spectrum, temporal electrode

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(f)

0 20 40 60 80 100 120
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
standup artifact Fourier spectrum, occipital electrode

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(g)

0 20 40 60 80 100 120
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
swallow artifact Fourier spectrum, occipital electrode

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

(h)

Figure 1. Fourier dB spectrum average for all ten kinds of muscular artifacts (averaged periodogram
in the logarithmic scale). (a) Eye blink, (b) gaze left → right, (c) eye roll clockwise, (d) teeth
grinding, (e) head nodding up and down, (f) say the word ‘Kampai’, (g) stand up and down and
(h) swallow. The blue curves are obtained by averaging the spectrum of all (n = 10) records 5 s
after artifact offset, whereas the upper curves are obtained during the artifact presence. Most
signals contain a peak around 50 Hz, corresponding to power noise. FFTs were computed at a
peak location of the QEEG distribution of each artifact (see 2). Each artifact has a specific effect
on the frequency spectrum (for instance, speaking does not disturb low frequencies, but eye rolls
do).
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move eyes
 left>right

  roll eyes
clockwise speak
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  down

nodding
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Artifact distribution over the scalp

Min
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Figure 2. Distribution of the QEEG artifact power (10–90 Hz), after z-score normalization
compared to the baseline (rest condition). The white zones represent electrode locations where the
activity is close to the baseline activity. The darker zones represent specific increases in power.
The figure was interpolated from the z-score into a location grid, using Matlab R©.

defined as

w(t) = A · e
−t2

2σ2 · e2iπf t , (1)

where σ and f are interdependent parameters, the constraint 2πf t > 5, and the wavelet
family is defined by 2πf t = 7, as described in Tallon-Baudry et al (1996). This wavelet has
positive and negative values resembling those of an EEG, but also a symmetric Gaussian shape
both in the time and frequency domains—i.e. this wavelet locates accurately time–frequency
oscillations both in the time and frequency domains. For each time sample t and each
frequency bin f , the wavelet transform computes one coefficient cf t . Wavelet representations
can be investigated according to baseline activity. To this end, one method typically used
is to normalize the time–frequency representation depending on the mean μf and standard
deviation σf of each frequency bin f in the baseline activity (the so-called z-score (Browne
and Cutmore 2004)). To detect the artifact-corrupted activity, the baseline activity should be
a representative of non-noisy signals. However, because EEG signals generally have a low
signal-to-noise ratio (SNR), the most reliable method is to repeat the estimation of μf and σf

on several clean signals (with the fewest possible apparent noisy activity). From each signal
b (used as baselines), a general normalized score is computed:

zf t = cf t − Mf

Sf

, ∀ t, (2)
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Wavelet profile of three successive grinds (Cz electrode)

Time (sec)

F
re

q
u

e
n

c
y
 (

H
z
)

0 .5 1 1.5 2 2.5 3

80

70

60

50

40

30

20

10

Sample EEG oscillatory patterns

Time (msec)

F
re

q
u

e
n

c
y
 (

s
e

c
)

50 75 100 125 150 175 200 225 250 275 300

60

55

50

45

40

35

30

85 msec

Centre
     X
(47 Hz)

  Centre
       X
(32.5 Hz)

123 msec

Figure 3. Sample wavelet time–frequency profiles for artifact compared to evoked potentials:
(a) artifact time–frequency profile, eye rolling clockwise, (b) artifact time–frequency profile, teeth
grinding three times and (c) evoked potential time–frequency profile (zoom).

where Mf is the average of the baseline means μf (b) computed for each signal b at the
frequency f :

Mf = μf (b) (3)

and Sf is the average of the baseline standard deviation σf (b) computed for each signal b at
the frequency f :

Sf = σf (b). (4)

3.2. Why consider time–frequency information?

Each type of artifact has a specific time–frequency shape, with sharp activity in the high-
frequency range and/or high amplitudes in the low-frequency range. Evoked potential activity,
on the other hand, is less sharp in the high-frequency range and has lower amplitudes in the
low-frequency range. The latter also usually has a well-defined duration (more than 3 time
periods (Caplan et al 2001)), as illustrated in figure 3. Time–frequency joint representations
allow the extraction of these characteristics, by defining time–frequency windows of interest,
which are more precise than the usual time windows used to define epochs for artifact scoring.
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3.3. Windowed z-score

Wavelet coefficients represent a signal with a time–frequency resolution that depends on
frequency. For high-frequency activity, the time position of events is very precise, while the
frequency content is imprecise and blurred. Conversely, for low-frequency activity, the time
position of events is imprecise, while the frequency estimation is very precise and thus is not
blurred. Added to this mathematical effect intrinsic to the properties of frequencies, we have
shown in the previous section that each artifact has specific time–frequency distributions.

Based on this observation, we define regions of interest in the time–frequency dimension.
We will first select frequencies of interest based on the ranges defined by figure 1: δα =
1–10 Hz, αβ = 10–35 Hz, γ = 35–90 Hz, and λ > 90 Hz. The δα band is low frequency;
hence, one would need a long-duration recording to efficiently estimate this activity (which is
not always feasible). Furthermore, EEG displays strong variations in the α range, which also
seems to have the best ‘signal-to-EMG’ ratio. For λ activity, the sampling rate does not always
allow one to study such a high range (it must be three to five times higher than the frequency
investigated (Barlow 1993)). Furthermore, technical limitations in clinical scalp recording
often prevents reliable recording in high frequencies from scalp EEG. The γ range needs to
be restricted even more, to 60–90 Hz, to avoid eventual 50 Hz environmental electrical noise.

Because our goal is to define a general method, we concentrated on the αβ and γ frequency
ranges (10–35 Hz and 60–90 Hz). For these two bands of interest, we defined shifting time
windows of four time periods around the central frequency (the period was Tαβ = 180 ms for
αβ and Tγ = 53 ms for γ ). Using these windows shifted along the time axis, we computed
two scores at five electrode positions E = [Fp1, Fp2, T7, T8,Oz].

The maximal score Wx indicates if the signal contains an artifact. Since high frequencies
are the most efficient for this discrimination, we used only the γ range:

Wx = max
e

(Hx(e)), (5)

where e represents EEG electrodes in E, and Hx represents the score for the signal in γ

frequency ranges (from fm = 60 to fx = 90, i.e. Fγ = 31 frequency bins):

Hx(e) = max
τ

(σγ (τ )) = max
τ

⎛
⎜⎝

√√√√√ 1

Fγ .Tγ − 1

fx∑
f =fm

τ+Tγ∑
t=τ

(zf t − zf t )2

⎞
⎟⎠ . (6)

The measure is therefore based on the standard deviation and not on amplitude, the latter
of which may classify strong EEG activity as an artifact.

On the other hand, the overall score Ws indicates the degree of noisiness within the signal.
To assess this general impact, we also took into account low frequencies of the αβ range:

Ws = max
e

(Ls(e),Hs(e)), (7)

where e represents EEG electrodes in E, and Ls and Hs represent the scores for the signal in
αβ (from fmαβ = 10 to fxαβ = 35, i.e. Fαβ = 26 frequency bins ) and γ frequency ranges:

Ls(e) = 〈σαβ(τ )〉τ =
〈√√√√√ 1

Fαβ · Tαβ − 1

fxαβ∑
f =fmαβ

τ+Tαβ∑
t=τ

(zf t − zf t )2)

〉
τ

(8)

and

Hs(e) = 〈σγ (τ )〉τ (9)

with σγ (τ ) as defined in equation 6.
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These two indicators are mandatory to accurately identify cases in which many evoked
potentials occur (high Ws but low Wx). Wx accounts for the presence of artifacts, while Ws

accounts for the quantitative proportion of artifacts in the signal.

3.4. Combination with ICA

Consider the case of multiple EEG channels sampling brain activity over time. If the signals
from each channel form the rows of the data matrix D, then each column of D is a time point.
Our problem is to identify the original brain sources that were mixed in the EEG channels.
This is a typical problem of blind source separation (BSS). ICA is a worthy solution for BSS
in the context of EEG recordings (Makeig et al 1996, Tang et al 2004), and finds the unmixing
square matrix W (n = m = the number of channels) such that W · D = C (Brown et al
2001). The rows of C are called ‘independent components’ because they are forced to be
as independent as possible; these are the sources for which we were searching. Delorme et
al (2007) showed that preprocessing EEG data using ICA allow effective artifact detection
and that the Slepian multitaper spectrum had the best overall cleaning capability. ICA can
effectively separate EEG from EMG background activity. Therefore, if we can detect which of
the C components represent artifacts, then it would be possible for us to reconstruct a cleansed
matrix D’ in which these components are removed. Thus, to clean corrupted signals, we
combined the windowed z-score method with ICA. First, the artifact database was mixed with
clean EEG signals. Artifacts were combined with the signals, and the ratio 10 log10(S/N)

of signal to noise was varied from −4.8 to 4 dB. For signals with good SNR values, artifact
detection becomes difficult, even for human eyes (with good SNRs ranging from 0 to 4 dB,
medium SNRs ranging from −0.8 to −3 dB and poor SNRs ranging from −3.4 to −4.8
dB). With poor SNR values, however, artifact detection becomes easy, and signals are altered
greatly (see figure 4). For all samples, we computed a mean-square error ON with the original
(clean) signal, measuring the original noise.

These corrupted signals were then decomposed using four different algorithms: SOBI,
JADE, FastICA and ThinICA (see, e.g., Cichocki and Amari 2002). Sources that contributed
to 95% of the total variance were retained, usually leading to a reduction to less than 15
components. These components were then analyzed using either Wx or Slepian multitaper
spectrum in the δ or γ ranges. After artifact cleaning, we computed the mean-square error
OE with the original (clean) signal. The cleaning was then evaluated as a ratio 1 − OE/ON

in percentage. A negative value means that the signal deteriorated rather than becoming
cleaned.

3.5. Method overview

Here we recapitulate how Wx and Ws indicators are computed, and how to use them.
The computation of Wx depends on the purpose of its application, i.e. artifact rejection or

artifact cleaning. For artifact rejection, the method follows five steps:

(i) Compute the reference baseline with appropriate clean signals.
(ii) Transform the EEG signal to be analyzed into a wavelet map.

(iii) Normalize the wavelet map relatively to the baseline.
(iv) Compute Wx .
(v) Test if Wx is above the threshold (reject if above 2).

In the context of artifact cleaning, two steps are added, and the rejection test is replaced by a
deletion of corrupted ICA components:
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Figure 4. Examples of different artifacts and clean signals having poor, medium and good SNRs.
Good SNRs range from 0 to 4 dB, medium SNRs range from −0.8 to −3 dB and poor SNRs range
from −3.4 to −4.8 dB. (a) Example of signal corrupted by teeth grinding, having three different
SNRs, (b) example of signal corrupted by speech, having three different SNRs and (c) example of
signal corrupted by eye blink, having three different SNRs.

(i) Compute the reference baseline with appropriate clean signals.
(ii) Transform the EEG signal to be analyzed into ICA components.

(iii) Transform each ICA component into a wavelet map.
(iv) Normalize the wavelet maps relatively to the baseline.
(v) Compute Wx from each component’s normalized map.

(vi) Delete components with high Wx (if above 2)—always remove the worst component even
if Wx is below 2 (considering that there is prior knowledge, always keep at least one
component (in the worst case, the best Wx) that the signal is corrupted).

(vii) Back project the remaining components to the scalp.

These steps are summarized in the flowchart of figure 5.
There are five steps to follow when implementing database balancing using Ws . In order

to balance artifacts from two databases A and B:

(i) Compute the reference baseline with appropriate clean signals.
(ii) Transform all the EEG signals to be analyzed into wavelet maps.
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Figure 5. Flowchart of artifact detection using Wx . Two possibilities are offered: either using Wx

to reject corrupted portions of the signal or to clean artifacts in combination with ICA.

(iii) Normalize the wavelet maps relatively to the baseline.
(iv) Compute Ws for each signal.
(v) Compare the distribution of Ws scores for A against B using a Kolmogorov–Smirnov test.

When the test returns a low p-value (especially below 0.05), the amount of artifacts in each
database is not similar. See Vialatte et al (2007) for more details about this procedure. These
steps are summarized in the flowchart of figure 6.

4. Results

4.1. Artifact rejection

Figure 7 shows the overall result of the artifact rejection method based on the Wx rejection
score. We apply the method on the two databases described above (artifact data as compared
to multimodal evoked potentials). Using linear discriminant analysis, we first estimated the
generalization capability of this method using a cross-validation method. A two-fold cross-
validation error of 4% was obtained, with a sensitivity5 of 98.8% and a specificity of 92.2%.
Eye-movement scores are generally close to the maximal evoked potential activity, with eye
blinks displaying the most varying activity. For a simple threshold classification, a cutoff
of 2.0 leads to the misclassification of 4.0% of evoked potential signals, while detecting all

5 Here sensitivity is the ratio of correctly rejected artifacts in the test fold, and specificity is the ratio of correctly
preserved clean EEG signals in the test fold.
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Figure 6. Flowchart of artifact balancing using Ws . Signals from two databases (A and B)
are evaluated. Each signal is associated with a Ws score. These scores are compared with a
Kolmogorov–Smirnov test. If the p-value is below 0.05, the impact of EMG artifact is higher in
either A or B (see also Vialatte et al (2007)).
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0

1

2

3

4

5

lo
g

(W
x
)

Figure 7. Boxplot of Ws for all artifacts (in the decreasing order of scores) as compared to
non-noisy signals containing evoked potentials (labeled control)—see (Benjamini 1988) about
boxplots.
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Figure 8. Artifact rejection combined with ICA: (a) using Wx , (b) using Slepian multitaper
spectrum in the γ range and (c) using Slepian multitaper spectrum in the δ range.

artifactual signals. A cutoff of 2.6 leads to a misclassification of 2.0% of artifactual data (all
from eye blinks, corresponding to 6.7% of the overall eye blinks), while detecting all evoked
potentials.

When analyzing false positive occurrences using the 2.0 cutoff, we discovered that some
false positives apparently represented an artifact that was not previously spotted (electrode
movement artifact) in the evoked potentials database and an artifact that lies outside of
the usual distribution of evoked potentials (shown as outlier in figure 7). The last types
of artifacts to look for in the EGG are eye-induced artifacts and other muscular artifacts,
which are easily discriminable because they clearly differ from one another and from EEGs.
Only speech-related artifacts have comparable Wx score values, which range from 6.7
to 13.8.

When combined with ICA, the method’s performance varied, depending on the SNR
(figure 8). When the SNR is poor, the method is very effective with a rejection rate of up
to 80%. When the SNR is moderately good, γ activity becomes more difficult to track and
performance declines to 30%. When the SNR is good, low-frequency activity is more easily
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Figure 9. General comparison of ICA artifact cleaning as a function of SNR. The bars represent
average of all signals and all ICA algorithms. Error bars represent standard error. Good SNRs
range from 0 to 4 dB, medium SNRs range from −0.8 to −3 dB and poor SNRs range from −3.4
to −4.8 dB.

separated by ICA, and the method again becomes efficient with a rejection rate of up to 65%.
When compared with the Slepian multitaper spectrum, similar results are obtained: in the γ

range, artifact cleaning is more efficient when the SNR is low, whereas in the δ range, artifact
cleaning is more efficient when the SNR is high. A systematic comparison (figure 9) shows,
however, that Wx is consistently equal or above the multitaper spectrum in all SNR conditions
(Mann–Whitney p < 0.01 for good an poor SNR conditions, no significant difference for
medium condition). With good SNR conditions, the Slepian multitaper spectrum method
becomes unstable and frequently yields negative results.

4.2. Artifact scoring

Instead of rejecting all artifacts, one may be interested in keeping signals with a satisfactory
‘signal-to-artifact’ ratio. For instance, eye blinks cannot be rejected for an ‘eyes opened’
condition with long duration, which does not elicit the same degree of perturbation
within EEG signals. In other words, one may be interested in a quantitative rather than
qualitative approach. When Wx represents an artifact, Ws scoring allows such a quantitative
evaluation.

Table 1 presents average log Ws scores for each type of artifact (log of 10 averaged
Ws for each trial, except for eye blinks, which were grouped in 30 trials, and eye moves,
which were grouped in 20 trials). Scores represent the impact of the artifact on the EEG (the
stronger the impact the higher the scores). Ws scores were computed for 2.5 s during and
after the artifact was triggered. Using this score, one can discard signals depending on the
desired quantitative amount of artifacts accepted (for instance, in experiments dealing with
the eyes-opened condition, one may accept artifacts having a magnitude of up to 1).
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Table 1. Quantitative evaluation of perturbations of EEG signals due to artifacts, using Ws log
average scoring. The magnitude is a rounded value.

Artifact type log10〈Ws〉 Magnitude

Eye blink 0.24 0
Eye move 0.88 1
Speak 1.29 1
Swallow 2.13 2
Grind three times 2.84 3
Nodding 2.95 3
Stand up 3.27 3

This method can be used to balance the artifact corruption of two databases before
comparing them. This method was also successfully applied to signals recorded from demented
Alzheimer’s disease patients in Vialatte et al (2007), where guidelines can be found about
artifact balancing.

5. Conclusions

We presented a new approach for rejecting artifacts on the basis of the time–frequency
properties of artifacts: sharpness of high frequencies and low frequencies. We tested this
method using real data. Simple linear discriminant analysis of these data revealed that the
artifact likelihood Wx achieved high cross-validation results with a sensitivity of 98.8% and
a specificity of 92.2%. Wx allowed satisfactory artifact cleaning when combined with ICA,
and outperformed the Slepian multitaper spectrum for this task. This method also allowed
the evaluation of the Ws score, the value of which represents the overall impact of muscular
artifacts on EEG signals.

With the Wx score, eye-blink artifacts appeared to closely resemble normal EEG high-
frequency evoked potentials. To achieve an improved classification, we found that a simple
relative power Hx(Fp1)+Hx(Fp2)

Hx(Oz)
is capable of efficiently discriminating 100% of eye blinks from

all other artifacts and from normal EEG, allowing a perfect 0% cross-validation error. However,
this result must be interpreted with caution as it may be related to the specific type of evoked
potentials being analyzed. For instance, frontal evoked potentials, especially may not be so
easily discriminated from eye blinks.

The Wx score is useful for detecting the presence of artifacts within signals. One general
application of this method, would be to use Wx scoring on all EEG signals to be analyzed, and
then to apply ICA to clean any noisy signals or simply to remove noisy data.

The Ws score can further help the practitioner by providing information about the strength
of the artifact encountered. This score can be used, for instance, when several sets of signals
are to be compared. Before making a comparison, the practitioner can improve the reliability
of his investigation by using Ws scores to determine whether noise levels are approximately
the same in all groups.

To compute these scores, one needs to estimate an average baseline from clean signals.
We advocate the use of signals in the rest condition, with an averaging on several trials—this
means that our method cannot yet be applied online (trials have to be recorded beforehand).
Furthermore, the precision of this baseline evaluation is a critical issue, since the artifacts to
be detected are activities that significantly differ from this baseline. A preferable solution to
dealing with few data or when poorly reliable data are only available is to use the inter-quartile
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range as a more stable estimator of standard deviation, instead of estimating the baseline
by averaging (Browne and Cutmore 2004). However, as the amplitude distribution of EEG
activity is skewed in the presence of evoked potentials, this method may remove some evoked
potentials from the distribution. These evoked potentials would be mistakenly considered as
outliers, thus achieving a lower specificity.

In the present study, we computed Ws scores using sub-windows within an overall period
of 2.5 s. However, a shorter time period can also be considered. As some artifacts elicit long-
duration activity in low frequencies, the score would become less reliable for slow muscular
artifacts (typically standing up/down, or nodding the head). Longer time periods could also
be used, but then information about short transient muscular artifacts (eye blinks, for instance)
would become less reliable.

Although only five electrodes—two frontal, two temporal and one occipital—were used
in the present study; the proposed method can be extended to other sets of electrodes and
be applied optimally to all electrodes. Ideally, the more electrodes can be used, the better
result will be obtained. However, the computational demand of such an investigation could
become heavy. As muscular artifacts are usually spread (see figure 2), we consider that it is
sufficient to use few well-chosen electrodes to detect EMG corruption. This would however
not be the valid assumption for other types of artifacts, which can have local effects on isolated
electrodes.

This method is well suited for rejecting muscular artifacts. However, one should take
into account the effects of other types of artifacts—i.e., electrodermal, electrovascular and
respiratory artifacts—that have not yet been evaluated. Furthermore, because epileptic activity
may also display sharp waves above the β range and up to the γ range (Worrell et al 2004),
this type of activity might also be detected as muscular artifacts when using Wx . When one
wants to use our method as a first cleaning stage before other artifact or epilepsy detection,
it should be combined either with an ad hoc automatic detection for these patterns or with
manual detection by an expert.

Finally, other frequency ranges should also be considered when analyzing muscular
artifacts, especially those in the δα range, which displays dramatic increases for some of
them (see figure 1). However, as explained in section 3.3, the δα band occurs within a low-
frequency range; hence, one would need to record for a long duration to efficiently estimate
this activity. Another limitation is that other artifacts may also interfere with this frequency
band (such as electrodermal artifacts and electrode movements). However, the extension of the
Wx computation to this range remains feasible, with an appropriately chosen time–frequency
resolution.

Our results were obtained using a database of 100 real artifact signals, and another of 25
evoked potentials. The processed database was seeded with the reference signal, and with
the varying SNR for the artifacts, which leads to hundreds of test signals. Our results on
this test set show that our method is stable and consistently performed better than the Slepian
Multitaper threshold method. However, the reader should keep in mind that the reproducibility
of our results was not stricto sensus verified, as we used only one subject. We also encourage
the reader to consider figures 1 and 2 as illustrative examples (these distributions might slightly
vary with other subjects). This paper has nevertheless a better theoretical validity, and our
results are obviously more reproducible, than results obtained with methods solely based on
artificial data instead of real EEG signals.

Some scientist might worry about researches intending to replace human intervention by
automated methods—a non-supervised method in the field of artifact rejection is not advisable.
Nevertheless, this objection should not prevent tentative exploratory researches, as our method
is not intended in the present stage to replace human intervention, but instead to help him
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in his task: this method would indeed find its best use in a semi-supervised routine, where
human intervention confirms the computer’s decisions (where the task of the algorithm would
be to spot suspect patterns, human confirms or refuse rejection). In conclusion, we suggest
that the choice made here is not to try to imitate human experts, but rather to classify known
artifacts. This should remain a quality criterion for as long as human scorers’ on EEG pattern
classification will not have proven to be more consistent (Norman et al 2000).
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Endnotes

(1) Author: Please check whether the edit in the sentence ‘Not only chewing, sucking and
swallowing . . . ’ retains its intended sense.

(2) Author: Please update reference ‘Slobounov et al (2008)’ if possible.
(3) Author: Please check whether the name of author in reference ‘Worrell et al (2004)’ is

okay as set.
(4) Author: Please provide the page range(s) for reference ‘Zimmermann and Sharein (2004)’.
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