246 research outputs found

    The physiology of lizards from arid regions in Central Otago.

    Get PDF
    The seasonal cycles in fat bodies, liver and gonads of Leiolopisma zelandica and Hoplodactylus pacificus have been established and the pattern of lipid storage and utilization in these organs, the tail and remaining carcass was also investigated. Each month skinks and geckos were collected in Central Otago. After dissection each organ was weighed and the lipid extracted. Liver glycogen was estimated. Four times during the year lipid was analysed by thin layer and gas liquid chromatography. Microscopic examination of reproductive organs was undertaken each month. Ultrastructure of the liver and enzymatic activity in the liver and tail and leg muscle was compared in winter and summer. Skinks have large fat bodies which act as a major lipid depot. Utilization of stored lipid occurs during yolk production and hibernation in females and during breeding and hibernation in males. Gecko fat bodies show only slight seasonal variations and cannot be regarded as important depot organs. Liver weights reached a maximum prior to hibernation in females and during hibernation in males and decreased in spring in females and during spring and the breeding season in males. Peaks in liver glycogen occurred in January, March and September (females) or November (males). Liver glycogen decreased to a minimum at the end of hibernation. Liver lipid increased during hibernation due to mobilization from depot organs but decreased to a minimum in spring. The liver cannot be regarded as a lipid depot organ. An increase in melanin pigment, autophagic vacuoles and residual bodies was evident in winter liver. Oxidation of fatty acids meets the energy requirements during winter. Enzymatic activity in the skink liver is decreased in midwinter compared to midsummer but in gecko liver, enzymatic activity is higher in midwinter. Males emerge from hibernation with small testes, testicular recrudescence occurs in spring and maximum testes size is reached in January. Mating occurs in February and March and coincides with the initiation of vitellogenesis in females. The period of yolk deposition extends from February to September in geckos and from March to September in skinks. Ovulation occurs in September and delayed fertilization is achieved by spermatozoa which have been stored in the female reproductive tract over winter. Geckos produce two young and skinks an average of three in January and February after a gestation period of three to four months. Structurally female and male reproductive tracts resemble those of other lizards. The tail acts as an important lipid depot organ in skinks and geckos. In geckos the carcass stores large amounts of lipid but the skinks carcass shows little variation throughout the year. Fatty acid oxidation provides energy for muscular contraction during winter. The periods of maximum lipid storage occur in November and December in males, during March in female skinks and from September to December in female geckos. The majority of this lipid is utilized for yolk deposition in females and during the breeding period in males. Lipid is also utilized during hibernation

    Contribution of anadromous fish to the diet of European catfish in a large river system

    Get PDF
    Many anadromous fish species, when migrating from the sea to spawn in fresh waters, can potentially be a valuable prey for larger predatory fish, thereby efficiently linking these two ecosystems. Here, we assess the contribution of anadromous fish to the diet of European catfish (Silurus glanis) in a large river system (Garonne, southwestern France) using stable isotope analysis and allis shad (Alosa alosa) as an example of anadromous fish. Allis shad caught in the Garonne had a very distinct marine delta(13)C value, over 8 per thousand higher after lipid extraction compared to the mean delta(13)C value of all other potential freshwater prey fish. The delta(13)C values of European catfish varied considerably between these two extremes and some individuals were clearly specializing on freshwater prey, whereas others specialized on anadromous fish. The mean contribution of anadromous fish to the entire European catfish population was estimated to be between 53% and 65%, depending on the fractionation factor used for delta(13)C

    The economics of the natural gas shortage (1960-1980)

    Get PDF

    Density-Dependence Mediates the Effects of Temperature on Growth of Juvenile Blue Catfish in Nonnative Habitats

    Get PDF
    The combined effects of conspecific density and climate warming on the vital rates of invasive fish species have not been well studied, but may be important in predicting how successful they will be in the future. We evaluated the effects of temperature and population density on monthly time series of sizes of age-0 Blue Catfish Ictalurus furcatus in the James, York, and Rappahannock River subestuaries (defined here as tidally influenced bodies of water that feed into the Chesapeake Bay) from 1996 to 2017, using growing degree-days (GDDs, °C day) as a measure of thermal time. Our pre- dictive linear mixed-effects model explained 86% of the variation in the length of age-0 Blue Catfish. In addition, it indi- cated a strong positive effect of temperature on the growth rate of age-0 Blue Catfish, with individual fish biomass during warm years up to 63% higher than during cool years. Growth rate was influenced negatively by the abundance of age-0 and older fish, resulting in at least fourfold differences in the predicted biomass of Blue Catfish by the end of the first year of life depending on conspecific density. We also observed regional differences in the growth rates of Blue Catfish in the three subestuaries we examined; although growth occurred in all subestuaries, growth was highest for the Rappahannock River population even though this river accumulated the fewest GDDs. Rising water temperatures due to global climate change will likely increase the growth rate of age-0 Blue Catfish in the Chesapeake Bay region, potentially intensifying the negative impacts of this invasive species on the ecology of Chesapeake Bay. However, individual populations respond differently to warming temperatures, and thus, potential increases in the growth rate of age-0 Blue Catfish may be par- tially offset by local conditions that may serve to limit growth

    Governance tools for board members : adapting strategy maps and balanced scorecards for directorial action

    Get PDF
    The accountability of members of the board of directors of publicly traded companies has increased over years. Corresponding to these developments, there has been an inadequate advancement of tools and frameworks to help directorial functioning. This paper provides an argument for design of the Balanced Scorecard and Strategy Maps made available to the directors as a means of influencing, monitoring, controlling and assisting managerial action. This paper examines how the Balanced Scorecard and Strategy Maps could be modified and used for this purpose. The paper suggests incorporating Balanced Scorecards in the Internal Process perspective, ‘internal’ implying here not just ‘internal to the firm’, but also ‘internal to the inter-organizational system’. We recommend that other such factors be introduced separately under a new ‘perspective’ depending upon what the board wants to emphasize without creating any unwieldy proliferation of measures. Tracking the Strategy Map over time by the board of directors is a way for the board to take responsibility for the firm’s performance. The paper makes a distinction between action variables and monitoring variables. Monitoring variables are further divided on the basis of two considerations: a) whether results have been met or not and b) whether causative factors have met the expected levels of performance or not. Based on directorial responsibilities and accountability, we take another look at how the variables could be specified more completely and accurately with directorial recommendations for executives

    Methane-carbon flow into the benthic food web at cold seeps – a case study from the Costa Rica subduction zone

    Get PDF
    Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15:0 and C17:1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus

    A systematic review of the evidence for single stage and two stage revision of infected knee replacement

    Get PDF
    BACKGROUND: Periprosthetic infection about the knee is a devastating complication that may affect between 1% and 5% of knee replacement. With over 79 000 knee replacements being implanted each year in the UK, periprosthetic infection (PJI) is set to become an important burden of disease and cost to the healthcare economy. One of the important controversies in treatment of PJI is whether a single stage revision operation is superior to a two-stage procedure. This study sought to systematically evaluate the published evidence to determine which technique had lowest reinfection rates. METHODS: A systematic review of the literature was undertaken using the MEDLINE and EMBASE databases with the aim to identify existing studies that present the outcomes of each surgical technique. Reinfection rate was the primary outcome measure. Studies of specific subsets of patients such as resistant organisms were excluded. RESULTS: 63 studies were identified that met the inclusion criteria. The majority of which (58) were reports of two-stage revision. Reinfection rated varied between 0% and 41% in two-stage studies, and 0% and 11% in single stage studies. No clinical trials were identified and the majority of studies were observational studies. CONCLUSIONS: Evidence for both one-stage and two-stage revision is largely of low quality. The evidence basis for two-stage revision is significantly larger, and further work into direct comparison between the two techniques should be undertaken as a priority

    The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    Get PDF
    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source

    Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment

    Get PDF
    δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization

    Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab

    Get PDF
    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins
    corecore