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PREFACE

An appraisal of the natural gas shortage requires both a detailed

description of political and technical institutions, and an economic

analysis of the evolving performance of this industry. Not much can be

said without a description of the legal controls on producing gas in the

South for delivery to consumers in the North, or without an economic ana-

lysis of price and quantity relationships on both the production and

demand sides of gas markets. There also has to be some indication of

the present size of the shortage, of the means by which the industry would

respond to policies to reduce the shortage, and how much time this response

would take.

The approach here divides the institutional and analytical materials

into two parts. First, the political and institutional frame of reference

is described and the present-day natural gas shortage is estimated in

Chapter 1; and forecasts are made of the effects on this shortage of

various alternative regulatory policies in Chapter 2. Second, a large-

scale econometric policy model of natural gas markets- both field markets

and wholesale distribution markets---is presented in Chapters 3,4 and 5

in some detail. Thus the model is described in Chapters 3-5 after it

is used for evaluating alternative policies in Chapter 2. This is done so

that non-econometricians can deal, with least obfuscation and delay, with

the results from the policy analyses, leaving it to the more technically

oriented analyst to check these results against the model and simulation

descriptions in Chapters 3-5. However, frequent references are provided

in Chapter 2 to the technical description in subsequent chapters, so

that documentation or analysis can be obtained where needed even by the

non-econometrician.
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The plan of the book, then, is as follows:(l) introduction to the

natural gas shortage and the technical-regulatory frames of reference for

explaining the present extent of the shortage. This is followed by (2)

an analysis of alternative policies for dealing with the shortage, using

the econometric policy model described in technical detail in Chapters

3, 4, and 5. For those seeking to understand the general nature of the

present policy problems in the natural gas industry, Chapters 1 and 2

should suffice; for those interested in the development of an econometric

model designed specifically to assess the efficiency of alternative regula-

tory policies in dealing with shortages, Chapter 3, 4, and 5 should be of

particular interest.
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CHAPTER 1

GOVERNMENT REGULATION AND

INDUSTRY PERFORMANCE, 1960 - 1974

1.0 Introduction

The natural gas industry in the United States has experienced sub-

stantial shortages in the last few years. Rather than hour-long queues,

as at gasoline stations in early 1974, the natural gas shortage of the

1970's has resulted in partial or total- elimination of service for groups

of consumers, both residential and industrial, that demand gas rather

than other fuels. Service has been terminated for interruptible buyers--

those taking gas only part--time or off-peak--and new potential full-time

consumers have not been allowed to connect to delivery systems. At many

locations, industrial and commercial consumers have been told to replace

gas with oil at least on a part-time basis. The sum total of these

unfilled demands has been fairly extensive. The Federal Power Commission

found that interstate gas distributors were 3.7 percent short of meeting

consumption demands of communities and industries in 1971 and that they

are expected to be 10 percent short of demands in 1974.1

There appears to be small prospect for amelioration of shortage

conditions in the near future, Unless there are unexpected discoveries, or

unless FPC regulation changes significantly, excess demand is expected to

grow to more than one-quarter of total demands This is not only the

prediction of econometric forecasts. Indeed. the FPC staff of gas experts

cf. National Gas Supply and Demand, 1971-1990 (FPC Bureau of Natural as,
Washington D.C., February, 1972).

This forecast is the result of use of an econometric policy model to stmu--
late continuation of present geological and regulatory constraints over tihe
period 1975-1980. The model is described in Chapters 3-5, and the simulations
outlined in Chapter 2, below.
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forecasts that, assuming continuation of present day regulatory conditions,

the shortage will grow to be as large as 20 percent of demands by 1980.3

Those that are now being told to curtail consumption or toswitch to other

fuels are not likely to be told anything different unless public policies

change.

Consumers in some regions of the country have fared worse than those

in other regions in obtaining the gas they demand. So far, buyers in the

North Central, the Northeast and the West--in that order--have incurred

most of the shortage. New residential buyers and new as well as some old

industrial buyers in those regions continue to be kept off distribution

systems. By the late 1970's, shortages in the North Central region could

exceed one-half of demands. If this occurs, then industrial and commercial

establishments will face 100 percent elimination of supply, in order that

there would still be enough gas to meet the "old household" consumption

draughts on local utilities. In other regions, industry may not be cut

off entirely, but substantial industrial buyers seeking to expand their

uses of gas would face curtailment at most locations. Some of these

buyers should be able to obtain more supply in the South, outside of

regulation and the shortage by relocating their activities 4 If they

were to relocate in significant numbers, there would be important changes

in regional industrial development. Industrial growth in the energy-related

industries of the upper Midwest would be reduced relative to the rest of

the country.

cf. National Gas Supply and Demand, op, cit.; this forecast calls for
almost as much shortage as the gas econometric forecast; presumably
it is based on continuation of present price regulation (although this
is not explicit).

4These statements are once again predictions from the econometric model
described in detail in Chapters 3-5. The forecasts for 1975-1980 shortage
conditions are developed at length in the next chapter.
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These conditions should elicit questions from many consumers in

the next few years. As service is curtailed, they might well ask, where

the shortage came from. In particular, they should know how long it

will last under continuation of present conditions in gas markets. and

if the shortage can be reduced at an earlier date by policy changes

of companies and governments.

It is important to know first where the shortage came from," so

that policies specific to type of consumer, location and time period can

be formulated to eliminate the shortage-creating conditions. The next

section of this chapter (1.1) specifies the details of the production

process in gas fields necessary for an understanding of the shortage sit-

uation. In Section 1.2, there is a lengthy description of gas field

price regulation by the Federal Power Commission. Regulation has become

an important precondition of production, and certain aspects of regulation

can be seen to have caused the development of the shortage. The third

section below (1.3) describes the behavior of field markets under present

regulatory controls as compared to "no control" conditions. The conclu-

sions here, showing the effects of controls, give credit to the regulators

for the shortage, Subsequently, Chapter 2 attempts to answer the question,

"how long will there be an extensive shortage" under present conditions. Also,

stud-es ae presented. of the effects from alternative governmental policies that

show that extensive change in the present method of control, and present

price levels, can have substantial ameliorative effects on the shortage.

1.1 Production and Distribution of Natural Gas

The field markets for natural gas center around transactions In

which petroleum companies dedicate newly-discovered reserves of natural

gas for production into pipeline transmission lines. Major petroleum

5The forecasts are based on simulations with the econometric policy model
described in Chapters 3-5,
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companies, along with smaller independents, initiate activities by using

seismic logging and the drilling of wells to "discover" new gas reserves,

or to complete the "extension" or the "revision" of previously known

reserves. They bring gas production to the surface where liquid by-products

are removed. Then the pipeline companies take the gas in the field and

deliver it to wholesale industrial users or to retail distributing com-

panies, that in turn deliver it into individual households, commercial

establishments or to retail industrial users. Ultimately, more than

45 percent of the natural gas production goes to residential and com-

mercial consumers, while the rest is consumed as boiler fuel or process

material in industry.

Reserves, production, and the pattern of consumption depend on

certain technical and economic conditions. The most important of these

relationships, in terms of an "economic model," are sketched in the

flow diagram below. Each of the boxes will be dealt with later in detail

(since this is a simplified version of the flow diagram for the econo-

metric model described in Chapters 3-5); but it is posited here that

prices of oil and gas are critical policy variables, such as the leasing

practices on government lands that determine production. Also, oil and

gas prices are policy-related determinants (along with non-policy variables

such as other fuel prices and consumer incomes) of residential or industrial

6The percentage of total consumption by residential and commercial buyers
was 45 percent in 1962, and 43 percent in 1968: as the natural gas shortage

appeared on the horizon, the amount of residential consumption declined.
cf. Federal Power Commission, Statistics of Natural Gas Pipelines (annual);
cf. also S. Breyer and PW. MacAvoy, "The Natural Gas Shortage and Reg-
ulation of Natural Gas Producers," Harvard Law Review (vol. 86, no. 6,
April 1973), pp. 977 et seq.).
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Companies claim such reserves as a result of new discoveries, or extensions

or revisions of previous discoveries (where extensions result from stepping

out beyond the limits of known field boundaries, and revisions are changes

in estimates of reserves in place within known field boundaries).

After reserves are known to exist, the producers "dedicate" them in a con-

tract calling for production over a five-to-twenty year period. In effect,

the producers estimate the size of newly-found inground deposits and provide

sufficient documentation to support contract commitments to pipelines for

production over that period. Of course, reserves are never known for certain

(as indicated by extensions and revisions each year), so that the contracts

are in effect "futures" agreements or promises to deliver an uncertain volume

of a commodity.

The process of adding to reserves begins long before commitments to

pipelines. Years earlier, the producer undertakes geophysical exploratory

work to show the existence of a potential inground hydrocarbon reservoir,

after which he sinks wells into the reservoir to determine whether there

is oil, gas, water, or whatever. The decision to conduct preliminary

geophysical research and drill wells is essentially an investment decision

under uncertainty; as the potential profitability of the investment increases,

the number of wells drilled increases and total discoveries increase.

Profitability depends upon future prices and costs, which relate in a com-

plicated but positive way to present prices and costs. Thus if present

prices increase, there should be an increase in exploratory work; this

9In the econometric model, tis process is described as being divided
between decisions on "well-drilling" and "size of discovery" per success-
ful well. Operating at the intensive margin implies increased drilling
and reduced size of find per successful well. Operating at the extensive
margin-implies increased drilling and an increase in the size per success-
ful well. Both together imply rising supply of reserves as prices increase.
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would lead, in a year or two, to additional drilling activity and subse-

quently to the offering of additional reserves for sale to pipeline

buyers. Of course prices are not the only determinant of reserves. There

is a fixed stock of gas to be discovered in a region, and it is suspected

that the larger and most profitable volumes are discovered and dedicated

there first. Technical progress in drilling or production techniques could

compensate for the limits in any area by pushing down costs of finding the

smaller volumes; also, some areas may not yet have experienced the initial

10
stages. But over time, at fixed prices and costs, we should observe that

the volume of discoveries declines per well drilled. 1

The discovery of reserves is the first step in the production process.

The second step is contractual dedication to the production of gas and its

1 0This again is dealt with explictly in the econometric model described

in Chapters 3-5. The summary here does not take account of the relative
importance of the variables (a) prices (b) technical progress (c) earlier
discoveries in explaining additions to reserves. The equations in Chapter
4 provide this important detail.

1 1At the present time, the limits on total reserves do appear to be con-
straining. We are not "out" of discoverable reserves in the United States.
The sum total of past production and of present discovered reserves, as
of 1970, totaled 648 trillion cubic feet, less than 40 percent of the
amount of ultimate discoverable reserves expected in most forecasts. The
amount remaining to be discovered has been estimated as 851 trillion cubic
feet (by the National Petroleum Council and by the Colorado School of Mines'
Potential Gas Committee), and as 2,100 trillion cubic feet (by the U.S.
Geological Survey). (National Petroleum Council, U.S. Energy Outlook: Oil
and Gas Availability, U.S. pept. of the Interior, Tables 291 and 292 on
page 367; Potential Gas Agency, Minerals Resources Institute, Colorado
School of Mines, Potential Supply of Natural Gas in the United States,
October 1971 (the latest report, issued in December 1973, gives 1,146
trillion cubic feet; U.S. Geological Survey, Circular 650, "U.S. Mineral
Resources," states that the range of estimates is between 1,178 and 6,600
trillion cubic feet.) Of course the amount actually found and put in the
reserves category will depend on the level of exploratory activity, on
costs of development, and on the prices offered by the pipeline buyers.
These are the most important (technical and economic) limiting factors; the
reserve estimates show enough additional reserve inventory to support at
least two decades of production (at forecast rates exceeding 30 trilli-on
cubic feet per annum).
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movement in the pipelines to final consumers. The amount of production

depends on a number of geological, engineering, and economic factors.

Production cannot take place at rates greater than some fixed percent of

reserves per annum, because of technical limits (sandstone in the reservoirs

is not completely permeable so that the gas cannot move to the well faster)

and because of economic costs (faster rates of depletion may reduce the

economic value of any remaining reserves by "channeling" and sealing off

parts of the reservoir from further production). But up to these limits,

more production can take place at higher short-run costs. Thus, with a

given reserve inventory, if prices are high enough to compensate for higher

costs of further drilling investment, the production rate can be increased.

Field markets for natural gas are, thus, similar to minerals or raw

materials futures markets in which present deposits are dedicated for future

production and refining. The important characteristics of these markets

generally are that more reserves will be dedicated if the buyers offer

higher prices, and that the lag adjustment process bringing forth additional

reserves by higher prices is likely to be long. Also, production out of

dedicated reserves is limited by technical or economic factors, but is

likely to be greater, the larger the volume of reserves available and the

higher the contract prices.

1.1.2. Wholesale Markets

The buyers of reserves at the wellhead are for the most part natural

gas pipelines providing gas under long--term contract to industrial consumers

and retail public utility-companies. The amounts of their annual deliveries

1 2That is, in the econometric model below, technical and economic condit-
ions determine production out of reserves, so that the level of production
will be greater, the greater is the volume of reserves in place and the
higher are prices in the contract commitment.
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determine their demands for reserves to be dedicated at the wellhead.

These annual deliveries in turn depend upon the prices they charge for

gas at wholesale (paid by industrial consumers and retail-public utilities

to the pipelines), the prices for alternative fuels consumed by final

buyers, and economy-wide factors such as population, incomes, industrial

production, etc., that determine the overall size of energy markets.

Gas wholesale prices, in turn, depend upon field prices and delivery

charges for transportation of the gas from the wellhead to the final con-

sumer. The pipelines offer instantaneous deliveries of gas as it is

burned by the final buyer: they charge a markup over their field pur-

chase prices as part of the wholesale price for these services. Markups

are determined by the historical average costs of transmission and by the

transportation profit margins allowed under Federal Power CommisiHlon reg--

lation (at least for the interstate pipelines).

Regulation of the wholesale prices, in fact, builds in significant

lags of changes in final prices behind those in field prices. The Federal

Power Commission has followed the policy of allowing wholesale prices

equal to the markup plus the historical average field price paid for gas

at the wellhead. This "rolled in" or average wellhead price changes slowly

as a result of higher prices on new field contracts, because new contracts

in any year make up only 5 to 15 percent of all contracts. The full impact

of a change in new contract prices is realized only after it has been in

effect for almost a decade (assuming O percent of deliveries in each year

come from new contract dedications). This time lag between changes Ln

wellhead and wholesale prices softens the impact on consumers of large

increases in new prices in field markets. Also, average transmission costs

change very slowly, as new construction costs or allowed returns on capital
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change slowly (at least as allowed by the FPC). From 35 to 40 percent

of the gas remains in the South Central region of the country where it

is produced; approximately 19 percent moves to the Northeast, 20 percent

to the North Central, and 7 percent to the western parts of the country.

This was the case over much of the 1960's, with only the North Central

region showing some increases over the period 1962-1968 (by three percen-

tage points, while the North Central region was reduced by the same percen-

tage).

The flow diagram shows how all these transactions work out in "normal"

circumstances. At a given level of field prices, the additions to reserves

meet the needs of the pipelines (as evidenced by their new contract demands).

If not, and there is excess demand, then the prices these pipelines offer

in new contracts increase above the previous level. Immediately, this brings

forth more production from old contract reserves, brings forth some new

contract reserves, and also cuts back on some of the marginal resale at

the pipelines. After a time, the higher new prices also bring forth more

new reserves and cut back on the long-term contracts sought by final buyers.

Eventually at some level of new contract prices the amount of new reserve

commitments by the producers is the same as the amount bought and resold

by the pipelines.

1.1.3. The Effects of Shortages on Field and Wholesale Markets

Under "normal" conditions, the reserve and production markets operate

to allow each pipeline buyer that "reserve backing" he desires, backing

that makes secure the continuation of production to meet his commitments

to residential and industrial consumers over the lifetime of their burning

13The process of setting markups on field prices is described in detail
in Chapters 3 and 4, using a truncated version (in equation form) of
FPC regulatory practice.
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equipment. In a "shortage", the new discoveries fall short of the

reserve amounts demanded by the pipelines in order to provide for the

backing he seeks for his wholesale buyers. Under these conditions,

the amount of actual field contract commitments are not equal to total

"demands," but are-equal only to "supply." At that point, the pipelines

either (1) limit their commitments so as to preserve backing for old

consumers or (2) draw down previously purchased reserves at a faster rate.

If the second alternative is taken, production demands of final consumers

could be satisfied for some period, as a result of the pipelines calling

on existing reserves to produce at a higher rate,(thereby eliminating

the reserve backing of old consumers). Thus reserve shortages in field

markets may not-be perceived by final buyers whose demands are temporarily

satisfied by present production (as was the case in the late 1960's)1 4

Production to meet expanding demands from previous reserve commit-

ments cannot be had indefinitely. Eventually, reserves from old commit-

ments are reduced sufficiently so that the amount remaining limits the

amount of production. As the reserve backing becomes smaller, production

tends to fall, and a gap is opened between the demands for production

and the amounts available. Many years may pass, however, before decline

in additions to reserves is followed by a shortage of production.

Can the process be reversed? As indicated above, if prices were to

increase in new contracts by a substantial amount, then more production

could be gotten out of the previously committed reserves (because the price

increase can compensate for additional costs from secondary recovery programs).

This effect may be rather small, however, given that reserves have already

been greatly depleted. But there would be a longer-term effect caused by

This is surmised 'from the simulations with the econometric model, as
shown for the 1960's and 1970's in Chapter 5.
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price stimulation of the discovery process. Higher prices would add to

incentives for exploratory drilling, and the drilling would increase new

discoveries, extensions or revisions of reserves. After these additional

reserves have been committed, the amount of production would then again

15
be increased. At the same time, over this extended period, demands

for production would be curtailed by the higher price. Total demands

would have increased because of increases in the size of energy markets

(and increases in the prices of alternative fuels). But high gas prices

should slow down the accumulation of new customers, so as to have a

dampening effect on the size of the increased gas demands.

The combination of both reserve and demand incentives should be to

reduce the excess demands. But it may take several years before the

full effects of a price change are felt in field and wholesale markets.

The period should be much longer than that required to complete the process

of market clearing in grain or metals commodity markets. Under some con-

ditions, however--with large price increases and new government policies

on reserve discovery--it is expected that most of the shortages expected

to occur in each region of the country can be reduced or even eliminated

before 1980.

1.2. Gas Field Price Regulation by the Federal Power Commission

The history of regulation bearing on the gas shortage began

1954, with the Supreme Court's decision requiring the Federal Power Comr..

missionto regulate the wellhead prices on production into the interstate

pipelines. This was an appeal in a case brought by the Attorney General

of Wisconsin against Phillips Petroleum Company; Phillips' prices to the

pipelines had been increasing, and higher prices were alleged to be contrary

15 As shown by simulation with the econometric model, the results are
given in detail in Chapters 2 and 5.
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to the best interests of consumers in Wisconsin. In lower court testi-

mony and briefs, arguments were made that the gas industry, while regu-

lated at the pipeline level by the Federal Power Commission and at the

retail level by the state regulatory commissions, was unregulated by

government and even worse was controlled by the large field producers

at the wellhead. Therefore field price increases, determined by a few

large petroleum companies, could be passed through as "costs" in whole-

sale prices to result in final price increases to the consumer. Such

pass throughs, it was argued, should be curtailed by the introduction of

FPC regulation at the wellhead. The Supreme Court, without explicitly

affirming that there was monopoly power in the hands of the producers,

found that the Federal Power Commission did have the mandate to regulate

16
the wellhead price.

For the next five years, the Commission attempted to respond to

the mandate. Price control at the wellhead covered first those contracts

in the Phillips case itself, since that case had been remanded by the

court for a finding of "just and reasonable " prices. The FPC first con-

trolled price levels in the same way that state public utility commissions

set limits on electric power or gas retail prices. The procedure begins

by estimating (a) operating costs, (b) the allowed rate of return times

the undepreciated original investment, and (c) depreciation of investment

per unit of gas produced under a contract. These unit "accounting costs"

Phillips Petroleum Company vs. Wisconsin, 347 U.S. 622 (1954). cf.
E.W. Kitch, "Regulation of the Field Market for Natural Gas by the Federal
Power Commission," Journal of Law and Economics (XI, Oct. 1968), pp. 243-
281; Kitch notes on page 255 that "the court gave no reason for the regu-
lation...considering the expertise of the Federal Power Commission... the
court gave no indication of how the regulation was to be carried out."
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are defined as equal to {[(a) + (b) + (c)]/q} for q annual production.

The permissible maximum level for average prices is set equal to these

unit costs, or to "costs of service." The "cost finding" approach to

price control was not readily applicable to Phillips, because part of the

gas was produced with oil, which was not being regulated, and some was

produced only after a number of dry wells had been drilled. Attributing

previous "dry hole" costs to particular gas contracts, and attributing

joint costs to gas or to oil, resulted in arbitrary limits on prices.

Also, the usual standards for finding the proper rate of return--the aver-

age rate of return for public utilities--scarcely applied to an exploration

and development company. In fact, higher returns were allowed to compen-

sate for exploratory risk, but these were simply stated as being appro-

priate. It turned out that the prices proposed by the Commission were

higher in some cases than the original prices objected to by the state of

Wisconsin.

During this time the Commission, dealing in infinite detail with

Phillips, was falling behind. The case had produced more than 10,000

pages of briefs and records; in the meantime, by 1962, more than 2,900

applications for price reviews had been filed by other companies. Man-

agement failure--the Commission itself forecast that it would not finish

its 1960 caseload until the year 2043 --and the arbitrary nature of

regulation together required the FPC to-try other ways of controlling

17cf. Phillips Petroleum Company, 24 FPC 537 (1960), at 545.
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field prices.l8

The FPC turned to setting the same ceiling price for all transactions

within a widely-defined geographical region. Temporary ceilings were

set at market levels established a year or two previously (in the fashion

of economy-wide "price freezes" common in the later 1960's). This way

of regulating resulted in a freeze on prices at the 1958-59 level, so

that new gas committed to interstate pipelines after 1961 had to be

priced at a level not higher than the 1958-59 level. The freeze was to

be temporary and was to be followed by "area rate" decisions which set

permanent prices. The permanent prices were to be based on the average

historical costs of gas within the region; and, in fact, considerable

attention in the area rate proceedings was given over to calculating

regional production costs, investment outlays and rate-of-return averages.

18James M. Landis was particularly critical of the FPC's performance in
the field of natural gas regulation, charging it with delays as well as
with disregard of the consumer interest. He wrote:

"The FPC without question represents the outstanding example in the field
of government of the breakdown of the administrative process. The complexity
of its problems is no answer to its more than patent failures. These failures
relate primarily to the natural gas field . . . These defects stem from
attitudes of the unwillingness of the Commission to assume its responsibilities
under the Natural Gas Act and its attitudes . . . of refusing in substance
to obey the mandates of the Supreme Court of the United States and other
federal courts. The Commission has exhibited no inclination to use powers
that it possesses to get abreast of its docket . . . The recent action of
the Commission on September 28, 1960 in promulgating area rates . . . has
come far too late to protect the consumer . . . The Commission's past inaction
and past disregard of the consumer interest has led the States to seek to
force it it discharge its responsibilities .. Delay after delay in certi-
fications and the prescription of rates has cost the public millions of
dollars . . . The Commission has literally done nothing to reduce the delays
which have constantly increased . . . The dissatisfaction with the work of
the Commisssion has gone so far that there is a large measure of agreement
on separating from the Commission its entire jurisdiction over natural gas
and creating a new commission to handle these problems exclusively'. .
Primarily leadership and power must be given to its Chairman and qualified
and dedicated members with the consumer interest at heart must be called into
service to correct what has developed into the most dismal failure in our
time of the administrative process."

See James M. Landis, Report on Regulatory Agencies to the PresidentElect,
December 1960.
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The FPC, faced both with an enormous backlog of individual cases

and with great difficulties in using orthodox procedures of price regu-

lation in this industry, cut through the procedures to set regional

maximum prices on the basis of regional average accounting costs. The

new approach turned out to he as fraught with logical difficulties as the

old approach. The Commission used estimates of regional costs from a

period when temporary ceilings were in effect to set permanent ceilings.

Since producing companies took on drilling projects with prospective costs

less than forecast prices, and on average probably realized the expected

level of costs, then the companies probably experienced costs up to the

level of temporary ceiling prices. Thus, the FPC, noting that average costs

were close to the temporary ceiling prices, found that the temporary

ceilings were appropriate for permanent ceilings. Temporary ceilings set

costs which set permanent ceilings.

Arbitrary or not, these prices did serve the Commission's interest,

which seemed to be in preserving the price level of the late 1950's. No

specific reason was given by the agency for preferring the early prices.

Neither case materials nor Commission decisions showed they thought that

prices should not be increased because such was dedicated by non-competitive

producers. Price increases seem to have been undesirable in and of them-

selves because they were subject to controversy (or could have been ob-

jected to by the pipelines) and because they could have run into difficul-

20
ties in court review.

19The "competitiveness of conditions" itself was never faced by the
Commission. cf. S. Breyer and P.W. MacAvoy, Energy Regulation by the
Federal Power Commission, Chapter 3 (Brookings Institution, Washington D.C.,
July 1974).

20 cf. Breyer and MacAvoy, op. cit., Chapter 3.
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The courts added to the freeze by arguing that price increases were

to be denied simply because they were increases. This is exemplified by

the 1959 case in Atlantic Refining Company vs. Public Service Commission

(360 U.S. 378) where it was stated that price increases were to be denied

because "this price is greatly in excess of that which Tennessee pays

from any lease in Southern Louisiana."2 1

The Commission's determination to "hold the line against increases

22

in natural gas prices" was sufficient to result in a constant price level

on new contracts for gas going to the interstate pipelines during the

1960's. The weighted average new contract price was 18.2¢ in 1961, and

19.8¢ per thousand cubic feet in 1969 (in the intervening years the aver-

age price fell by approximately .6¢ per Mcf to a low of 17.6¢ in 1966).23

The average wellhead prices on old and new contracts increased from 16.4¢

to 17.5¢ per Mcf from 1961 to 1969, primarily as a result of the replace-

ment of very old contracts at low prices with new contracts at the eililng

levels close to 16¢ per Mcf.2 4 These prices resulted in the consumer (at

wholesale) paying approximately 33¢ per million Btu for natural gas

2 1This case is discussed in detail by Edmund Kitch in the article

"Regulation of the Field Market for Natural Gas by the Federal Power

Commission", Journal of Law and Economics, o..cit. p. 261. Kitch

argues that "the court reasoned from the premise that prices higher than

prevailing prices were questionable simply because they were higher ." He

shows that an examination of the increases that were occurring at the

time does not support an argument that this was in response to demonstrated

manipulation of the market by the producers.

2 2cf. Federal Power Commission, Annual Report for 1964 (vol.43), p. 15.

These and data series described in the next few sentences are from the

data bank used in compiling the econometric gas policy model. Appropriate

references are provided in Chapters 3, 4, and 5.

24At the same time, average industrial drilling costs did not increase --

otherwise, they alone would have been the justification for regional price

increases given the process of regulation. But the combined efforts of

cumulative disLoveries and faster rates of production must have increased

marginal production costs. This is indicated by simulations with the econometric

model described below, showing declining reserves qdditions at constant prices.



throughout the decade, with a range from 32.0¢ per million Btu in 1962

to 33.4¢ per million Btu in 1970). (At the same time prices for oil at

wholesale increased from 34.5¢ to 39.8¢- and coal from 25.6¢ to 31.2¢

25
per million Btu.) The Commission succeeded in holding gas prices down,

while prices of other fuels were going up from 10 to 25 percent over the

same time period.

Regulatory policy was reversed in 1971, with a series of FPC rate

reviews and decisions that substantially increased the level of field

prices. Based on "recognizing the urgent need for increased gas explor-

ation and much larger annual reserve additions to maintain adequate service,"

the Federal Power Commission "offered producers several price incentives.2 6

For those producing areas in the country containing more than 85 percent

of reserves, the Commission increased prices by 3 per thousand cubic

feet (in Kansas) to 5.2¢ per thousand cubic feet (in South Louisiana).

These increases applied to new contracts signed that year. The FPC also

began a proceeding (Docket R-389A) to set national ceiling-prices on all

new contracts, and howed some intention of providing substantial increases

25An example shows even greater disparities. Wholesale prices charged by
Columbia Gas Transmission Company to the Baltimore retail gas company
(Baltimore Gas and Electric) were 43.5¢ per mcf (or per million Btu) in
1970 as a result of frozen fiold prices, while wholesale terminal prices
for #2 fuel oil were 86.3¢ perl million Btu at the same location that year.
Although retail delivery charges could explain part of the difference, it
could not explain it all. The size of the difference increased by 30$ per
million Btu per annum in the succeeding three years.

The oil and coal price series are from Edison Electric Institute,
Statistical Annual of the Electric Utility Industry, for these fuels
consumed in electric power stations; this is as close to a wholesale
price series as can be obtained for comparability with gas sales by
pipelines to either retail gas utilities, electric utilities, or other
industrial users.

cf. Federal Power Commission Annual Report, 1971 (U.S. Government
Printing Office, Washington, D.C., 1972) p. 36.
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by this route by new preliminary prices at the same time in the Rocky

27
Mountain area 7¢ higher than those previously in effect. Further

increases were also promised as a result of the Commission establish-

ing a procedure for certifying new producer sales above the prevailing

area price ceilings. This procedure would allow higher prices when they

were "shown to be in the public interest." 2 8 Although no explicit schedule

of higher prices was forthcoming from the new exceptions, the setting out

of an explicit path for avoiding the ceilings pointed to price increases.

In fact, the results of these policy changes have included a sub-

stantial increase in new contract prices in the last few years. The

weighted average new contract price increased from 19.8¢ per thousand

cubic feet in 1969 to 33.6¢ per Mcf in 1972. During 1973, the average

new contract price probably rose to 36¢ per thousand cubic feet (although

this is a preliminary estimate). The price freeze of the 1960's was in

effect abrogated in the early 1970's with new contract prices increasing

by 70 percent in four years. The question is whether this was "too little"

and "too late" to clear excess demands for reserves and production over

the rest of the decade.

1.3. The Behavior of Field and Wholesale Markets under Price Controls2 9

Institutional and political conditions together produced the shortage.

The technical conditions of production resulted in long lags between new

2 7cf. Federal Power Commission 1971 Annual Report, op. cit., p. 42,
"Initial Rates for Future Gas Sales from All Areas", Docket no. R-389A.

2 8cf. Federal Power Commission Annual Report for 1972 (U.S. Government
Printing Office, 1973), p. 49.

2 9Much more detail could be provided on the operating practices, and regu-
lation, of the pipelines before going on the describe the actual develop-
ment of the shortage. The pipelines are regulated by the FPC on the basis
of the procedures described above as"orthodox" public utility price controls,
except on charges to direct industrial consumers or interstate consumers.
Suffice it to say at this point that equities stressing "cost averaging" capture
much of the results from this regulation in the econometric model in Chapters
3-5. The simulations from the model as a whole are stressed at this point.
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discoveries of gas and final production of that gas for the consumer.

At the same time, however, regulation, by preventing price increase over

most of the decade of the 1960's, was the critical precondition for emer-

gence of excess demand.

The fixity of prices contributed to the winding down of exploratory

activity and the resulting reduction in new reserves over the last half

of the 1960's. This is shown by simulations of actual prices, with

the econometric model, as reported in Table 1.1. Total additions to

reserves, at prices on new contracts ranging from 18¢ to 33¢ per Mcf,

declined over the period from 17 trillion cubic feet in 1967 to 15 tril--

lioncubic feet in 1972 (with a low of 14 in 1971).

The reserves decline would not have been the case if new contract

field prices had been higher. This is indicated by considering any of

a number of alternative sets of prices in the econometric model--where

each set is a possible replication of what unregulated prices would have

been. There is no way if telling which set is more appropriate.

But one likely hypothetical "unregulated" price, shown in Table 1.1,

would probably have added more than a trillion cubic feet of additional reserves

each year in 1969-1972 sufficient to prevent a drawing down of the total

reserve stock.

At the same time that new reserves were being added at a lower rate,

gas pipelines were realizing increases in final demands at a higher rate.

3 0This price level was inserted into the cononetric modell n order to

simulate, over the 1967-71 period, the behavior of additions to reserves.
Reserves are estimated with the equation relationships for dscoverles,

extensions and revisions as a function of prices, costH, and potential

reserve discoveries. This simulation is described in detail. In Chapter

5. The basis for choice of the prices shown in Table 1.1 for "unregulated"

was that they maintained a reserve to production ratio of 15/1 -- the

lowest ratio actually experienced in the early and middle 1960's. Given

that demands for reserve backing by final consumers was constant throughout

the decade, this ratio is the lowest in keeping with equilibrium of demand

and supplies of reserves as well as production throughout the period.
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The pipelines then had the choice of either refusing buyers or of meet-

ing expanded additional demands for production by taking from their inven-

tories of old committed reserves. The companies in fact continued to

meet new demands for production out of old reserves. There was no pro-

duction shortage in the late 1960's or early 1970's; this is indicated,

as shown in Table 1.2, by simulated "production" and "demands" in the

econometric model being approximately equal each of these years.

Instead of drawing down reserves, the pipelines could have denied

new customers access to the reserves. The interstate pipelines, ack-

nowledging that there would be a reduction in the reserve backing then

committed to established customers, could have refused to take on new

customers unless they could be provided the reserve-production ratio avail-

able in the early 1960's. The level of production from this policy would

have been less, as indicated by the model simulations reported in Table 1.3.

The estimates for production at the constant R/P for the early 1960's,

in Column (1), are approximately 4 trillion cubic feet less than actual

production in Column (5) of Table 1.2. This difference is the amount

"diverted" frnm the inventory reserved for old customers to provide immed-

iate increased production.

This "reserve saving" alternative would have required cutting back

production to less than would have occurred without price controls. The

amounts expected without controls are shown as Column (2) of Table 1.2.

These are from simulations with the econometric model at the hypothetical

"unregulated" prices shown in Column (3) of Table 1.1 Both "reserve

saving" and "no regulation" would have had less production than the actual

amount because actual production was extended to meet extra consumption

demands of new buyers induced into the gas market by the low frozen prices.
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The conclusion is that price ceilings imposed by the Federal Power

Commission, in conjunction with long lags from prices increases to production, had

a two-stage effect upon gas field and wholesale markets. First, the frozen

prices reduced the amounts of reserves found over the last half of the

1960's. Second, the attrition in reserve additions was not matched by

reductions in the growth of production. Rather, additional demands from

both new and old customers were met by taking more production out of the

existing reserve stock.3 1 The established consumers with 15 to 17 years

of reserve backing on annual production lost some of that backing, to the

advantage of consumers receiving the expanded service, at least up to

1972. After 1972, there was not enough reserve backing to allow production

to meet all of the increased wholesale demands, so that the "production

shortage" then set in.32

The lags among reserves, production, and consumption makes it diffi-

cult to say who benefitted and who lost up to 1972. But customers in the

Northeast, the North Central, and the West received a proportionately

smaller share of the increased production out of old reserves, as compared

to consumers in the Southeast and the South Central. This is indicated

3 The demands in turn were increased by the relatively low prices at whole-
sale following from the frozen field prices. The additions to demands as
a result of frozen prices can be seen from comparing "production demand" at
actual average wholesale prices (shown in Column (4) of Table 1.2) with the
demands that would have been realized at the hypothetical "unregulated 4

prices (shown in Column (2) of Table 1.3, which shows both production and
demands at prices sufficiently higher to hold the 1965 reserve-production
ratio through the rest of the decade). These "artificially' induced" addi-
tions to demand from the lower- frozen prices were of the order of 3 to 4
trillion cubic feet per annum by 1971-1972, and were realized mostly in the
South Central and Southeast prtions of the country as demands for boiler
fuel that would have been met by residual fuel oil in the absence of the low
gas field prices.

32
The 1973-1974 production shortages are shown in the Federal Power

Commission staff study of the supply and demand of natural gas (op. cit.)
and in the econometric model simulations shown for those years in Chapter
2 below.
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in Table 1.4, where demands at actual prices are compared with demands at

hypothetical higher "unregulated" prices for each region and for each year.

The differences, as derived from the econometric model simulations, indicate

that demands were increased by relatively low frozen prices more in the

South Central and Southeast (almost 45 percent of the increased consumption

occurred in the South Central region alone). Since the increased demands

were satisfied in large part by production out of old reserves, then,

in effect, the backing for old customers was being used to cover additional

demands induced by low prices in the South. This reallocation of consumption

must be considered to be perverse, since those losing the reserve backing

were customers under the protection of regulation, while those gaining

the additional consumption were mostly intra-state or industrial consumers

in the South not covered by Federal Power Commission regulation.

Can anything be said about the size of the dollar gains and losses

from this pattern of regulation? Money estimates of benefits are excep-

tionally difficult to make. The gainers were customers not having to

pay the higher "unregulated" prices for that amount of service actually

received without any reduction in reserve backing. At least, on this

consumption the service was still secure and the price had been held down.

The losers were customers unable to increase their consumption without

taking a reduction in reserve backing (or without undertaking additional

risk of running out of gas before the end :of the lifetime of their gas-

using equipment).

An approach to such measurement would begin with the first class of

consumers. Their dollar gains should equal their consumption at

constant R/P ratios times the difference between regulated and "unregulated"

prices. The dollar loss of the second class roughly should equal

one half of (a) the difference between their actual consumption and their
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Figure 1.2 Gains and Losses from Field Price Controls

S

uantity
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hypothetical unregulated comsumption at constant reserve backing multiplied

by (b) the difference between the unregulaed and the "shadow" price (that

33
would clear the market of regulated demand at constant reserve backing).

Field producers experience losses from price ceilings as a matter

of course. They lose by price ceilings those amounts gained by consumers

on established service, and also lose roughly an amount equal to one-half

the difference between regulated and unregulated prices times the difference

between regulated and unregulated production.

Any estimates of these price and quantity differences is most inexact,

particularly because they depend on "unregulated" prices, when regulation

throughout the decade has prevented observations of any such prices. Also,

any overall assessment depends upon whether the gains to established con-

33
This can be seen by inspection of the rudimentary supply-demand diagram,

in Figure 1.1, as follows: the gains of established consumers are repre-
sented by Area A and the losses of consumers with reduced backing is shown
by Area C.

The statement on prices in the text can be understood by inspection of the
diagram. Here ql and q2 are at the old reserve production ratio (since
otherwise measurements of gains and losses would be made while "quality
of service" in reserve backing was also being allowed to vary). The measures
used here are the levels of production implied by constant R/p ratios shown
in Table 1.3 The estimates for ql are given by production at hypothetical
"unregulated" field prices (Column 2) and for q2 by production at regulated
prices at constant R/P ratio (Column 1). The price appropriate for regu-
lated q2 is P*2 which clears the market of the reduced quantity q2 (result-
ing from the freeze at P2). This price P 2 has been estimated by simulation
with the econometric model.

There is also a loss by producers equal to Areas A and B. Again, these
are measured at the mid-1960's constant R/p ratio, and thus are the same
ql and q2 as in the last paragraph. The net losses to all groups combined
are equal to Areas B plus C, unless specific weightings are assigned to
the "worth" of a dollar taken away from producers and a dollar given to
consumers. Such a specific weighting of, say, 0.0 on the first and 1.0
on the second would attribute Area A to net economy-wide gains. No such
attribution is made here.

3 4 This is the number of dollars equivalent to Area B in the diagram in
the preceding footnote.
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sumers are treated as worth more than the losses of producers. Neverthe-

less, as an indication of the orders of magnitude of gains from the price

controls, estimates of prices and quantities have been made from simulations

with the econometric model. Field prices are as under regulation or, alter-

natively, at the simulated "unregulated" levels shown as being necessary

to preserve the reserve backing. Alternative levels of production are as

simulated at actual prices at a constant R/P ratio, or as simulated at

hypothetical unregulated prices.35 From these prices and quantities, the

gains and losses have been estimated as follows:

(1)

Gains to
Consumers
(Area A)

billions of dollars

0.3

0.7

1.2

1.7

2.2

2.5

(2)

Losses to Consumers
from a Reduction

in Reserve Backing
(Area C)

billions of dollars

0.0

0.1

0.1

0.1
0.1
0.1

Losses to
Producers

(3) (4)

(Area A) (Area ];)
billions of dollars

0.3 0.0

0.7 0.1

1.2 0.1

1.7 0.1

2.2 0.1

2.5 0.1

3 4This is the number of dollars equivalent to Area B in the diagram in the
preceding footnote.

35
The two simulation series for quantities are as shown in Table 1.3 as

Columns (1) and (2) respectively. The Column (1) series is correct for
regulated prices because it shows the amount of production at the "same"
or constant R/P ratio. This amount is the proper level on which to assess
gains of established consumers, since no reserve backing has been lost to
that point. This takes account of net benefits after adjustment has been
made for the losses to consumers from the elimination of reserve backing.
The calculations of Areas A, B, and C are based on the assumption that the
loss of reserve backing was equivalent to the reduction of present consump-
tion at constant reserve backing, and that that reduction of present consump-
tion is equivalent to the lowest level of production q2 in the diagram
above.

Year

1967

1968

1969

1970

1971

1972

-
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These are "static" gains and losses) since they include only one

year's production results.3 6 As limited as they are, they show that con-

sumers as a group gained. What they gained, producers lost. The losses

which would have gone into dividends to stockholders of gas companies,

or into new investment in exploration and development, cannot be ignored

entirely even if they were recognized by the regulatory commission. All

that can be said is that the price freeze did more good for buyers in

holding down their monthly payments of gas bills than the losses to them

from reductions in reserves, and that the freeze did slightly more harm

to producers in income and production losses.37

Whether this array of benefits and costs from field price controls will

continue. in the 1970's is the concern of the next chapter. During the

later 1970's, the shortage of production consequent-upon the reduced reserve

backing should by itself lead to greater losses to established customers.

An attempt is made in the next chapter to show whether there will still be

net gains from regulation to customers then--particularly to interstate

customers (since they are being protected by the Federal Power Commission

from price increases).

1.4. Summary

The Federal Power Commission, having been given tle task of regulating gas

field prices by the Supreme Court, tried any number of ways of adapting old

regulatory techniques to new contracts for producing gas reserves. The

rationale for regulation provided by the courts centered on keeping prices

36 Because of the extreme imprecision of the basis for estimates, a more

complex dynamic analysis was ruled out at this point. Nor would the general
results be further illuminated by discounting these numbers to present value
at the time of the temporary area rates.

That is, the sum of consumer gains (Areas A-C) falls slightly short of
producer losses (Areas A+B).
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at the levels experienced in the late 1950's; prices were to be stabilized

for stability's sake. The Commission's resolve to hold the price level

was strengthened by court decisions stressing that the FPC could set

prices using whatever review process seemed most appropriate. Eventually,

in the area rate proceedings, the FPC found the means for invoking freezes

on prices over wide regions.

There is little question but that price stability was achieved.

Stability probably led to deficiencies in supplies of reserves and, ulti-

mately, deficiencies in production of gas in the early 1970's (as shown

by simulations with the MIT econometric model described below. In the

absence of controls, prices probably would have gone up enough to have

maintained at least a fifteen--to-one reserve production ratio, and to

have held back demands'so as co have cleared field markets of all new

reserve demands. Model simulations based on these conditions show that

higher "unregulated" prices (sufficient to have cleared reserve markets)would have

dampened demands and would have been at best 60 percent higher on new

contracts, and when such prices were rolled in to wholesale changes, resi-

dential and commercial customers would have paid 20 percent more for the

amounts they actually consumed.

To some extent, given these conclusions, the rationale for regulation

can be judged in retrospect. Even though the courts and Commission are

not explicit on who should receive the benefits from regulation, it might

be assumed that those who actually did benefit were meant to be blessed by

the regulatory process. Assuming such does not lead to a very clear and

consistent view of regulation. Consumers, particularly in the South outside

of FPC controls benefited from low prices on the production they received.

But they and others lost their reserve backing, since old reserves were

used to provide for expanded production for new consumers--indeed into the
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market by relatively low frozen prices. The model simulations of benefits

and losses for particular groups indicate that consumers as a whole

received benefits from lower regulated prices, even after accounting for

losses for some from reduced reserve backing, and producers as a whole

experienced losses to a somewhat greater extent than the consumers gained.

Thus up to the beginning of the production shortage consumers at least

may have benefited from controls. The rationale for regulation may

have been no more than that of income redistribution to gas customers

up to the point of production shortage. The rationale for the production

shortage then remains to be found.
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CHAPTER 2:

ALTERNATIVE REGULATORY POLICIES AND THE

GAS SHORTAGE, 1974 - 1980

The development of production shortages in the last few years has

had a strong effect on the conduct of regulation. Soon after the appear-

ance of such shortages--manifest in the inability of pipelines to meet

commitments to consumers--the Federal Power Commission, through the intro-

duction of new regulatory procedures,brought about extremely rapid increases

in new contract field prices. This was partly in response to widely-expressed

opinions--from both producers and pipelines---that higher prices were needed

to bring about more discovery activity and from that more production.

However the lags in the system from price changes to more production which

resulted were so extensive that, by 1974, there has been little production

change from large price increases. The continued shortage has placed new

pressures on the Commission for further changes in policy as well as in

price levels.

At the same time Congress and the Office of the President have become

focal points for complaints that FPC policies have failed to ameliorate

gas production shortages. Many of these complaints have come from buyers--

the pipelines and retail gas utilities--in the northern and western :iparts

of the country feeling the production shortfalls. With neither producers

nor consumers supporting gas regulation, there has been:;substantial pressure

for change. The changes most often proposed have been in the realm of new

legislation reforming the controls allowed the Federal Power Commission.

The proposals for legislative reform have been in two contradictory

directions. The first is towards more regulation, while the second calls

for elimination of-Federal Power Commission controls over field markets.
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The justification for moving in either direction is that the shortage would

be reduced and consumption expanded for those users of-gas needing it the

most if the legislation is passed. However both justifications cannot be

correct--either more of less regulation could be expected to reduce the

shortage. but not both.

This chapter considers these alternative directions for policy,

and evaluates each in terms of its ability to reduce the gas production

shortage. No one specific bill before Congress, or specific rate schedule

proposed to the FPC, is evaluated in detail, because legislation and cases

change rapidly enough to render any such detailed evaluation quickly

obsolete. Rather, attempts have been made to characterize policy and then

to evaluate for each type its general effects on the gas shortage. Two

classes of policies--(l) a reaffirmation of regulation and (2) deregulation

of field prices--are described, and then evaluated in terms of the shortage

by simulating with the econometric model to obtain predicted prices and

quantities for 1975 to 1980.

2.1. Strengthened Regulation

Stronger controls over wellhead prices have been proposed before

Congress and the Federal Power Commission. Many reasons have been given

for this position, but most pervasive is the argument that producers have

been holding back reserves in anticipation of relaxed controls. Because

of the long lag structure from discovery to production, many years have

to pass before there is any effect from higher new contract prices. It

is argued that this period can be extended by producers if they think that

future prices are going to be higher after regulation has been relaxed.

The argument for tighter controls is that strict ceilings will cause producers

to see the futility of holdinLg back supplies and, as a consequence, more
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gas will be forthcoming at present prices.l The blame for the shortage

lies with the FPC and its price increase policies: "[The FPC], with the

best motives, has so tittilated the speculative expectations and ambitions

of the producer industry with a promise of imminent deregulation and ever-

higher prices, that t has become perfectly rational profit-maximizing

behavior on their part to move slowly on development and production of

.2reserves."

The case for stronger regulation has been made with a different

argument as well, that higher prices in fact will have little effect on

the size of the shortage. This is asserted, for example, by Peter Schuck

of Consumers Union when, after reviewing data on past increases in the

price of natural gas and on the resulting quantity responses, he concluded

that "deregulation would not significantly increase natural gas supplies.3

This is asserted to be because the response of production to price is

limited by the lack of competition in field markets. As concluded by

Dr. David Schwartz of the Office of Economics of the FPC, ;'a review of

the evidence indicates a lack of workable competition in the producer

market (and) due to structural imperfections, deregulation would result

in extensive prices, windfall profits to the producers, consumer exploitation

cf. Testimony of Mr. Lee White, Chairman, Energy Policy Task Force,
Consumer Federation of America, Hearings on Gas and Oil Regulatory Bills
(U.S. Commerce Committee, 1973-1974) pages 457 et sic. White's argument
is compromised by an attempt on his part to separate "increased demand"
and "reduced supply" from "price" as factors contributing to the present
natural gas shortage. (cf. page 478).

2Testimony of Peter Schuck, Director, Consumers Union, in Hearings on Gas
and Oil Regulatory Bills (U.S. Commerce Committe, p_. cit.) page 737.

3 Testimony of Peter Schuck, op. cit.
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and little assurance of adequate supplies of natural gas."4 Although

none are necessary for the case, the three arguments that are presented--

(1) speculative non-response (2) low supply elasticity and (3) lack of

competition--alleged together or separately, cause price increases to

have no effect.

With no supply response, there is no need, in any way, for weakening

price controls. In Schwartz' terms, "If administered fairly and firmly,

regulation can assure an equitable framework for producers and consumers.

There is strong evidence that the present unavailability of gas supply

is related to the speculative anticipations of significantly higher prices."5

The thrust of any new policy would be to affirm ceiling price regulation

as a price freeze process, with any frozen price level to hold for a

considerable period of ime in the future.

Many proposals hav3. been made for determining the level of frozen

prices and for deciding which producers should be subject to the freeze.

Some have called for extending regulation to include intrastate sales,

so that the "speculative outlet" of higher intrastate prices would be

foreclosed. Others have proposed limiting the freeze to only the large

producers. Proposals along the lines of the Consumer Energy Act of 1974

4

Cf. testimony of David Schwartz, Hearings on Gas and Oil Regulatory Bills,
op. cit., page 220. Others, particularly Professor Alfred Kahn, have
argued that supply is inelastic (thus assuming that markets are competitive
enough for there to be a supply function). Cf. testimony of A.E. Kahn, The
Permian Basin Area Rate Proceeding FPC Docket ARGl-1(1960). This assertion
was not supported by evidence on supply elasticities. The econometric
policy model used below deals with the extent of market imperfection directly,
by fitting equations for production out of reserves that contain terms for
degree of market imperfection. These terms then are used in equations
for predictionof future production in the econometric model (as described
in Chapters 3 and 4).

5Testimony of David Schwartz, p.-cit., page 221 and page 223.
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proposed in the Senate (S.2506) called for abolishing the FPC alternative

pricing procedures and establishing a national ceiling on prices of both

gas and crude oil. The nation-wide rates would be based on historical

costs plus a "fair rate of return" determined by an orthodox public

utility rate review.6 The goal of all those proposed stricter controls

is to slow down. the rate of increase of prices.experienced in the 1970-

1973 period, while adding to reserves and production.

If this goal is not achieved, so that no new legislation is passed,

the FPC could continue its recent policies of increasing prices on new

contracts by as much as 5 per Mcf each year. In doing so, the Commission

is not likely to be hindered by the Courts of Appeal. The Supreme Court

has continually affirmed te Commission's right to proceed; in the most

recent case, the.Court once again quoted the words of FPC Versus Natural

Gas Pipeline Company whereby rate-making agencies "are permitted to make the

pragmatic adjustments which may be called for by particular circumstances."
7

The courts "have consistently held that there is a presumption of validity

that attaches to each exercise of the Commission's expertise. Those who

would overturn the Commission's judgement undertake the heavy burden of

making a convincing showing that it is invalid because it is unjust and

,8
unreasonable in its consequences.. Within this context, the Commission

6But there would be more latitude within proposals to allow the Commissionl

to consider in finding the rate of return "factors which are relevant to

assuring that the nation has adequate supplies of oil and gas at reasonable

prices to the consumer." Cf. "Congress Near Showdown on Proposal to Decontrol

Gas Prices," National Journal Reports (May 25, 1974), page 772. The quotat-

ion is from a market-up version of the Consumer Energy Act, still in committee

as of July 1, 1974. Although "supply and demand factors" could allow the

Commission to set any price ceilings it wished, without reference to a

Congressional mandate for stronger control, the goal of a price freeze is

still predominant in this legislation.

FTC v. Texas Inc. et al. 42 United States Law Week 4867 (June 11, 1974).

8Cf. Mobil Oil Corporation v. Federal Power Commission, 42 United States

Law Week 4842 at 4855 (June 11, 1974). The words are quoted from the deci-

sion in Permian Basin Area Rates 390 U.S. 747 (1968).



has followed the practice of increasing prices on new contracts each year

of the last few years, based in part upon historical cost considerations

and in part upon price increases as the means for reducing shortages.

This judgmental procedure, continued into the future, would be the "least

vigorous" reaffirmation of regulation.

Thus there are two distinct alternative types of policies that

could be characterized as "strong regulation." The first would be the

product of new legislation, and would result in the installation of price

freezes along the lines of the area rates of the early and middle 1960's.

The general level of prices on new contracts would change only if the

(extremely slow moving) historical average costs of production warranted

changes. The second would, from default of Congress, be no new legis-

lation, but would allow the Commission to exercise its "pragmatic" judgment

that further changes in price levels were warranted, In such cirsumstances

the Federal Power'Commission, .in keeping with decisions.in the 1970's,

to this point would likely allow changes in new contract price levels of

up to 5 per Mcf per year.

2.2. Elimination of Regulation of Field Prices

The more widespread reaction to increasing production shortages has

been the call for the removal of wellhead price regulation. Since prices

were frozen over much of the 1960's, and shortages developed first in

reserves in the middle 1960's and then in production in the early 1970's,

it has been argued that controls were the cause. Furthermore, eliminating

controls altogether should hasten the process of eliminating the shortage.

The call for dereg ulation of wellhead prices on new contracts is asserted to be

a first step in that direction. Calling natural gas "America's premium

fuel," the President in April 1973 proposed legislation to exempt gas

V
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newly dedicated to the interstate pipelines from ceilings so as to "stimu-

9
late new exploration and development. The same case was made by the Chair-

man of the Federal Power Commission by noting that "gas supplies are short

and the way to encourage more drilling and discoveries may be to let prices

rise.,10

Deregulation as a policy is based on the argument that there is sub-

stantial responsiveness of both production ad demands to price increases.

Decontrol is the quickest way to take advantage of this responsiveness

and thus to eliminate shortages. Although lag structures are not assumed

away, most proponents of deregulation expect it to result in the elimination

of the shortage in at least the near future. Decontrol should allow higher

prices to clear markets of excess demand by increasing both reserves and

production, and by decreasing demands at wholesale. Also, it would be

expected that gas now being channeled away from controls into intrastate

markets would go back to the interstate pipelines as the prices offered

interstate either matched or exceeded those offered by local industry.

There is less than perfect agreement among proponents of deregulation

as to how and over what time period decontrol should occur. The Republican

Administration has proposed gradual or "phased":' deregulation of new contract

prices. Price ceilings would still be. in effect on old contracts now deliv-

ering production, and the prices of new contracts would be allowed to increase

only by steps over the next few years, until presumably by 1980 any further

increases would be determined by market conditions alone. The step ceil-

ings would be administered by the Federal Energy Administration, and would

Cf. "Congress Nears Shutdown on Proposal to Decontrol Gas Prices " National
Journal Reports, op. cit., page 764.

1 0Cf. "Federal Power Commission Head Urges End to Gas Curbs," The New York
Times, April 11, 1973, page 19.
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be based on forecasts of future production and economy-wide demand

conditions rather than on backward-looking accounting costs. But total

deregulation of all contracts has been proposed as well (Senate Bill

371, sponsored by Senator John Tower in 1973). Also, immediate dereg-

ulation of new.contract prices has been proposed, and came close to

passage as an amendment to other energy-related legislation (the Buckley

amendment to the Energy Emergency Act of 1973).

There have been many reasons advanced for elimination of regulation

other than that' there would be a quick market-clearing response. Most

basically, it is argued that the regulatory process itself produces

systematic shortages, so that there s no way of even avoiding a shortage.

This is because price changes lag behind costs under historical average

cost rate-setting procedures. With rising resource costs there is no

way that regulated prices can ever "catch up."

Without going into the validity of these arguments justifying price

decontrol, the question here is whether decontrolled prices would "do

better" in the late 1970's. Would higher prices of the sort proposed

for FEA significantly reduce the size of production shortages? This is

an empirical question. The answer supports either the case for strengthened

regulation ("low elasticity") or deregulation ("high elasticity").

2.3. Assessing the Effects of These Policy Alternatives

With long lags from price increases to more reserves and production,

it might be expected that any policy would be effective only after a number

of years had passed. Also, there would be only gradual changes in demands

1 1This point leads to questioning whether a process designed for public
utility controls applies to a natural resource industry. Cf. Stephen
Breyer and P.W. MacAvoy, "The Natural Gas Shortage and the Regulation
of Natural Gas Producers," The Harvard Law Review (Vol.86, no.6, April
1973), page 941 et sic.
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as a result of new contract price policies, since "rolled in" procedures

pass field price increases through to wholesale price increases only after

a number of years; after that, the wholesale prices affect industrial or

final consumer demands. But even so it is expected that there would be

some change in the first few years and a significant change by 1980. No

political process taking a decade to show results is relevant in this

system. Thus advocates of either (1) stronger controls or (2) decontrol

expect their policies to eliminate the gas shortage and improve gas markets

for consumers by 1980.

These possibilities are investigated by introducing the proposed

policy changes into the econometric model of gas field and wholesale

markets. Assuming certain rates of growth of production costs, of economy-

wide determinants of demand, and of oil prices, the econometric framework

leads to predictions of additions to reserves and production from each

of twenty-nine production districts. There are also predictions from the

model for residential and industrial demands in five regions of the country.

By inserting new contract field prices consistent with each alternative

policy into the modules for production, and by marking up field prices

through roll-in pricing procedures in the modules for demand, predictions

are made of reserves, production, and demands for each policy. Thus a

policy can be examined in terms of the implications of its pricing schedule

for levels of the production shortage.

2.3.1. Strong Regulatory Controls of Field Prices,

Regulation could bring either a strict price ceiling for the rest of

1 2The last half of the 1970's, assuming a rather expansive economy,
would have inflation rates of 6.5 percent, real growth of incomes and
investment of 3.5 percent, and substantial oil prices (close to $7.00
per barrel in 1979 dollars).
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the decade or, at the other extreme, price increases on new contracts

by as much as 5 per Mcf per annum. The strict price ceiling would be

in keeping with legislation calling for a return to public utility controls,

as that offered by the Senate Commerce Committee in 1974. On the other

hand, price increases by as much as 5 per annum would be in keeping with

the Commission continuing its 1971-1974 price-increasing practices. Both

of these pricing policies will be simulated with the econometric model,

in order to determine their effects on production and demands. Also, an

intermediate policy proposed recently will be evaluated in terms of its

effects on production and demands.

The most restrictive of these strong controls would require a price

freeze at the 1974 level, with adjustments allowed only for changes in

historical average drilling costs thereafter. Given that average drilling

costs in the last four years have increased close to tile rate of 3¢

per Mcf per year, it can be expected that new contracts would be limited

to the 1974 level of 39¢ per Mcf, with 3 cent increases thereafter (as

showa in Table 2.1).

Such limited price changes would hold additions to reserves and

production close to pre-1970 levels. The simulations indicate that new

discoveries should increase somewhat, from the ten trillion cubic foot

level in the early 1970's to 14 or 15 trillion cubic feet, but primarily

as a result of the incentives to exploration which follow from the assumed

high level of oil prices (close to $7 per barrel in real terms). Total

additions to reserves would be less than 25 trillion cubic feet each year,

while production would rise to as much as 30 trillion cubic feet. As a

result, the reserve base would decline from 230 to 217 trillion cubic

feet by 1980.
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The model smulations show demands much greater than production with

ceiling prices held at these levels. Total demands for new production

are forecast to increase from 24 trillion cubic feet in 1973 to approxi-

mately 41 trillion cubic feet, as a result of the rapid increases in oil

prices combined with the ceiling on gas prices (which prevents new con-

tract prices from rising even as much as general price increases due to

inflation.)

As a result, excess demands are expected to increase for the remainder

of the decade. The gap between production and demand is forecast to

increase as time passes, from approximately 3 trillion cubic feet in

1975 to 10 trillion cubic feet by 1980. The ceiling price would appear to

exacerbate excess demands so that the shortage will be close to 25 percent

of total demands for production by 1980.13

The Federal Power Commission itself has recently proposed a new form

of regulation that inadvertently may have about the same effects. In

its decision in Docket R389A case (considered "promising of future price

increases" (as noted in Chapter 1), the FPC on June 26, 1974 allowed all

gas produced from wells drilled after January 1, 1973 to sell at prices

of 42¢ per thousand cubic feet. This uniform national rate would increase

by 1¢ per annum thereafter. The ceilings were arrived at from review of

13These results from strict controls can be expected whether values of

exogenous variables assumed here are used, or whether reasonable "higher"
or "lower" values are used. As shown in the simulations in Chapter 5,
when "high" values are used the size of the excess demand in 1980 is
larger, and when lower values are used the excess demand is somewhat
smaller. The results are approximately as sensitive to changes in oil
prices as they are to changes in the values of economy-wide variables.
Simulations based upon high versus low values of exogenous variables
differ by approximately 7 trillion cubic feet in forecast excess demand
for 1980. But this amount of difference, while substantial, does not
affect the conclusion that strict regulation cannot eliminate the present
natural gas shortage, and is likely to make it worse.
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both costs and market conditions. The Commission did not expect these

prices to be sufficient to clear excess demands immediately; the Commission

said the demand for gas "is much higher than the supply and will remain

so for the immediate future."1 But the Commission in its judgment con-

cluded that "these rates for natural gas sold in interstate commerce are

adequate to bring forth the requisite supplies to fill reasonable demand"

but "not so high that natural gas consumers are exploited during times

of shortage." 5 These proposed prices are not different in kind from

"strengthened regulation," because they require a low national ceiling

and a small increase each year.' By setting this national ceiling, the

Commission has in effect frozen prices on some contracts already at the

42 cent level. These contracts are those with the most advantageous

reserves and production (large in quantity and close to final delivery

points); because these are frozen, the effect may be the same as a

general price freeze, although the FPC did not intend it to be so. Also,

the overall allowed increase of 1¢ per annum is significantly less than

sufficient to compensate for expected inflation. Thus the effect over

time as well as over space may be similar to a general price ceiling.

The forecast results are shown in Table 2.2. New discoveries are

expected to be 30 percent less than under "cost of service" regulation

in Table 2.1, and, given production close to 29 trillion cubic feet,

the reserve stock in the United States is expected to fall below 200

trillion cubic feet by 1980. At the same time, demands are expected to be

Cf. J.L. Rowe, "Price Boost Approved for Natural Gas," The Washington
Post, June 26, 1974, quoting from the Commission decision'in Dockets
R389a, National Area Rates.

15J.L. Rowe, op. cit.
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enhanced by the low field prices and to grow to 42 trillion cubic feet

by 1980. Excess demands are forecast to exceed 13 trillion cubic feet,

or 30 percent of total demands. The forecast results imply that the

Commission not only will be unable to reduce the shortage, but will create

even greater excess demand than would occur by invoking old "cost of

service" procedures on a regular basis through the rest of thedecade.

A more promising alternative is the FPC form of regulation. The

Commission, in the absence of new legislation, would continue its 1970-

1973 policy of allowing average price increases each year on new contracts.

Area rate reviews, along with individual case reviews, could result in

five cent annual increases on new contracts. The basis would be the prag-

matic judgment of the Commission as to what was necessary to ease a grow-

ing production shortage. As shown in Table 2.3, additions to reserves

would be expected to increase by 1980 to approximately 30 trillion cubic

feet per annum, as a result of substantial increments in discoveries,

extensions and revisions. Production would be expected to fall slightly

short of the total additions to reserves each year. As a result, the

total stock of reserves would be expected to decline somewhat by 1976, but

to return to the level of 230 trillion cubic feet by 1980.

Unfortunately, neither the additions to reserves nor the level of

production would appear to be sufficient to eliminate the shortage. Simulated

demands increase at a slightly lower rate than under the two alternative

regulatory policies discussed above, principally as a result of the average

wholesale price increasing from 48¢ to 72¢ over the period from 1975 to

1980. Even so, the demands of 39.9 trillion cubic feet by 1980 exceed

production by 8.3 trillion cubic feet. Worse.still, because of smaller

additions to production than to demand, the shortage is expected to increase.

Excess demand is a smaller percentage of total demand than under strict
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"cost of service" regulation, but still exceeds 20 percent of total demands.

In this case, as with the previous simulations of "strengthened regulation,"

policies that result in small annual price increases do not of themselves

eliminate the shortage of production. Price ceilings would appear to

make the shortage worse.

2.3.2.. Phased Deregulation of Field Prices

Given the large number of alternative proposals under the rubric

of "deregulation" of field prices, no single price schedule can be proposed

for an exact depiction of market conditions under decontrol. Most proposals,

however, would allow new contract prices to seek their own levels after

1980, with increasingly higher ceilings on new contract prices in the

intervening period.!6 The ceilings in fact would not eliminate excess

demand in the mddle 1970's, because they would be set to prevent substan-

tial price increases in the immediate future. Many rules of thumb have

been proposed for setting the interim prices; among the most frequent is

that of keeping average wholesale prices from increasing by more than 100

It should be stressed that "phased deregulation" is in no way a synonym
for complete deregulation within a few months' time. Although complete
and instantaneous deregulation is an alternative being considered, it has

not been examined here for political and economic reasons. The chances
of its acceptance by Congress seemed so small that it did not merit space
in this short chapter. Also, there is no analytically acceptable procedure
for simulating complete deregulation, since the equation relationships
in the model were constructed on the basis of data for two decades in

which regulation was predominant. Extrapolation of relationships during

regulation, to indicate other relationships in unregulated markets,
seems unacceptable; the chances in patterns of price expectations alone
would be so great as to eliminate any similarities of producer performance
under the two regimes of control. Simulations of "phased deregulation"
over the next five years seem to be legitimate, since they involve the
continued use of price controls of the nature of those in the 1960's
and 1970's when the data for equation estimation were generated.
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17
percent over the 1975-1980 period. Using wellhead prices in keeping

with such interim ceilings, a representative sequence would include a

25 cent increase in 1975, with 5 per annum increases thereafter. Simu-

lations with this price sequence have been completed as representative

of price and production behavior under "phased deregulation."

The simulations indicate increased discoveries each year, up to

29 trillion cubic feet by 1980, and total reserves to the level of 270

trillion cubic feet by that year (as shown in Table 2.4). The impact of

the price increases on new discoveries would not occur immediately, but

rather would begin to appear in the second and third year after the 25

cent price increase. Production out of reserves would increase somewhat

faster than reserve accumulations themselves since production depends on

price as well as the reserve level. As a result, simulated production rises

from 23 to 35 trillion cubic feet, at the rate of more than 1 trillion

cubic feet per annum.

At the same time, simulated demands for gas Fe. reduced as a result of

the pass-through of the higher new contract field prices to the wholesale

level. In fact, wholesale prices are not expected to increase very rapidly.

These price equivalents were presented to members of the House of
Representatives in individual briefings in the Spring of 1974 by the
Columbia Gas System, 20 Mountchanin Road, Wilmington, Delaware as a.
basis for legislative proposals allowing higher gas prices. As a matter
of fact, they would allow price increases that would still not place
natural gas prices at the same level as oil prices forecast for New
Jersey in 1980. The sequence of such "equitable" prices would be as
follows. Gas wholesale prices start at approximately 44¢ per Mcf in
1974 and increase to 88¢ per Mcf in 1980. The final price is equivalent
to crude oil prices close to $5 per barrel. But the addition of
further delivery charges to places as far North along the eastern coast
of the United States as New Jersey would add at least 30¢ to these
average nation-wide wholesale prices. The resulting East Coast oil
and gas prices would be $7 per barrel in 1980 dollars--the level of
oil prices in 1974 dollars used in the econometric forecasts.
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(The average wholesale price up to that point in time rises only to

84¢ per Mcf, while the new contract field price in 1980 is 90¢ per

Mcf.) Even so, the price increases are sufficient to hold demands down

to the level of 35 trillion cubic feet per annum by 1980. "Phased"

increases in gas prices curtail the growth in demands for production

by almost 36 percent (as compared to FPC regulation with 3 cent per

annum price increases).

The results of this policy would seem to include a substantial

reduction in the gas shortage within a reasonable time span. By 1979

the levels of production and demands for production are both expected

to be approximately 35 trillion cubic feet. Of course there is some

chance that there would still be some shortage, given that these fore-

casts, based upon the "probable" values of economy-wide determinants of

costs and demands, are not going to be perfectly accurate. But the most

likely general price increases, oil price increases, and gas increases

(in keeping with phased deregulation) should clear production markets

of excess demand. In comparing this with "strict regulation" policies,

it would appear that this is the policy more appropriate for eliminating

the gas shortage. The process would be extended over many years, and would

As in keeping with the simulations for "strict control," attempts have been
made to assess the precision of the forecasts. The approach consists of
inserting different values of exogenous variables into the econometric model
to determine how the size of forecast excess demand changes. The different
values of exogenous variables are discussed below, in Chapter :5. But, even
with a wider range of values than likely would occur, the size of the shortage
as a result of this phased deregulation policy does not vary greatly. There
would be a shortage as large as 2 trillion cubic feet if either "high" oil
prices or "high" economic factors prevailed; but if low values of both exo-
genous oil prices and economic variables were in effect, the shortage would
be a surplus as large as 6 trillion cubic feet at prevailing phased dereg-
ulation prices. Under these last circumstances, it would be expected that
the price ceilings would not "operate." Prices would be below ceiling
levels, or reserves would be put back into the reserve inventory rather
than produced (so as to raise the reserve-production ratio).
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involve large field price increases. But "phased deregulation" should

reduce the shortage to negligible levels by 1980, while more regulation

would likely increase the shortage so that the excess demand would range

from 8 to 13 trillion cubic feet out of 40 trillion cubic feet of total

demands per year. If the goal is to eliminate the shortage, as those

proposing policy changes all espouse, the proper direction.would seem to

be that of "phased" deregulation.

TABLE 2.5:

TAXES ON CONSUMPTION

TO ELIMINATE THE GAS SHORTAGE

Field Price on
Year New Contracts

¢/Mcf

1974 39.7

1975 44.8

1976 49.8

1977 54.9

1978 60.0

1979 65.1

1980 70.2

Taxes on
New Contracts

¢/Mcf

0

10.9

21.9

32.9

43.9

55.0

66.0

Production
Supply

trillion cu. ft.

24.6

25.4

26.4

27.4

28.7

30.1

31.5

Production
Demand

with Taxes
trillion cu. ft.

26.3

28.7

30.6

31.9

32.5

32.3

31.2

Of course there are other ways of eliminating the shortage, but

they are more expensive for the consumer and/or the taxpayer than "phased

deregulation." Consider two alternative policies deliberately designed

to eliminate the gas shortage. The first is to tax consumption so as

to reduce demands to the level of 31 trillion cubic feet--that level of
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production forecast to occur under continuation of regulatory "status quo."

As simulated by the econometric model, the taxes levied on pipeline buyers

in new contracts would have to begin at 10¢ per Mcf in 1975 and rise to

66¢ per Mcf in 1980 (as in Table 2.5). These taxes would be added onto

new contract field prices, so that the pipeline pays 136¢ per Mcf for

new gas at the wellhead in 1980. When these prices are "rolled-in", they

would be sufficient to cut back on wholsale and final demands so as to eliminate

excess demands.

The shortage could be eliminated by increasing gas supply an additional

10 trillion cubic feet. This could conceivably be done by subsidies on

new contracts added to the controlied prices paid--subsidies that would provide

income to the producer, but ould not add to the field or wholesale prices

paid by the buyers. Table 2.6 shows the subsidies required to bring forth

the additional supply necessary to match the demands, given a regulatory

price freeze, of 39.9 trillion cubic feet . The simulations from the

econometric model suggest that this could be achieved by 1980 with subsidies

of more than 1 per lief on new contracts, so that the field producers would -receive

$1.78 per Mcf that year on new commitments to interstate pipelines. In this

case, the "price" of $1.78 per Mcf on new contracts would be "split" between

buyers and taxpayers.

Both of these policies would seem more costly than phased deregulation,

simply because each uses only one-half of the market at any time. The

tax policy uses the "demand dampening" mechanism of increasing prices to

consumers, while the subsidy policy uses the "supply expansion" mechanism

of increasing profits to producers. But "phased deregulation" uses both

supply and demand incentives, so that the amount of price increases or pro-

fit per unit of "excess demand reduction" is less than with either of the

fiscal policies.
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TABLE 2.6

SUBSIDIES TO ELIMINATE

THE GAS SHORTAGE

Field Price on
Year New Contracts

¢/Mcf

1974 39.7

1975 44.8

1976 49.8

1977 - 54.9

1978 60.0

1979 65.1

1980 70.2

Production
Demand

trillion cu. ft.

26.3

28.8

31.3

33.6

'35.8

37.9

39.9

Subsidy on
New Contracts

¢/Mcf

0

17,9

35.9

53.8

71.8

89.9

108.1

Production
Supply with
Subsidy

trillion cu. ft.

24.6

26.6

28.9

30.7

33.3

36.2

40.0

2.4. The Effects of Gas Policy Changes on Producers1 Consumers,
and Others

The superiority of the "phased deregulation" policy, at least insofar

as reducing the shortage is concerned, is so great that there would seem to

be little basis for support of the alternatives. But there is substantial

concern over the income effects from policies centered on working only on

the shortage. Consumers are subject to substantial price increases from

deregulation, which recur to producers as higher profits.

The effects involve more than simple income gains or losses. The

shortage itself affects incomes. Curtailments this last winter in the

use of gas in the North in residential and commercial consumption left

consumers with lower real incomes.



In fact, there may be important groups of consumers that would gain

from phased deregulation. Residential consumers already not attached to

a retail gas utility company would gain from phased deregulation if they

were allowed to join the ·system because there was increased production

available. Industrial consumers would gain because they would receive

ga's that otherwise would not be available to them. Northern consumers

would benefit most from decontrol at the expense of consumers in the

South Central part of the country.

These patterns are indicated in Table 2.7. Under "status quo" regu-

lation, excess demand would be greatest in the North Central and second

19
greatest in the Southeast region of the country. If all residential

demands in the North Central and Southeast are met, as a result of allo-

cation requirements by the FPC that residential consumers be served first,

then the excess demand there has to be realized by industrial buyers. Thus

from 90 to 100 percent of industrial demands in those regions would have

to be cut off, with buyers going to alternative fuels and/or curtailing

production of final products and services. Thus, given the most likely

pattern of control over who gets the shortage, the industrial consumers in

the North Central part of the country would receive "real income" or bene-

fit from "phased deregulation" more than anyone else.

Price decontrol would have an-impact on other industries--particularly

other energy industries--so that they would be important "gainers" and

"losers" as well. In the presence of excess demand for domestic natural gas,

a new industry could develop in the early 1980's to provide gas from other

19
There would be less excess demand in the Northeast and West, because of

access to pipelines going into the more likely productive new field areas,
particularly offshore and in the Permian Basin. There is expected to be
no excess demand in the South Central region, because higher intra-state
prices in that region allocate additions to reserves to buyers there first.
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TABLE 2.7

SHORTAGES BY REGION, 1978 - 1980

Northeast:
Excess Demand

(a)

0.7

0.7

0.7

North Central:
Excess Demand

(a)

4.3

5.0

5.6

West:

Excess Demand

(a)

0.2

0.3

0.4

Southeast:
Excess Demand

(a)

1.7

1.8

1.9

Total Residential
Demand

(b)

2.9

3.0

3.0

Total Residential
Demands

(b)

3.9

4.1

4.3

Total Residential
Demand

(b)

1.8

1.9

2.0

Total Residential
Demand

(b)

1.1

1.3

1.4

Total Industrial
Demand

(c)

2.4

2.4

2.5

Total Industrial
Demand

(c)

4.6

5.1

5.6

Total Industrial
Demand

(c)

3.0

3.1

3.3

Total Industrial
Demand

(c)

2.1

2.3

2.3

Source: Simulations with the Econometric Model derived from regulatory

"status quo" conditions. All estimates in trillions of cubic feet.

Year

1978

1979

1980

1978

1979

1980

1978

1979

1980

1978

1979

1980
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parts of the world. Liquified Natural Gas would take the place of domestic

natural gas not developed under price controls. This Liquified Natural Gas,

presumably from North Africa or the Soviet Union, could eliminate excess

demands; at FPC regulated prices, it is forecast that LNG prices could exceed

$1.00 per Mcf delivered into the North Central region for demands greater

than 4 trillion cubic feet (if the LNG prices were "rolled in" to wholesale

prices before being passed on to wholesale and retail consumers). LNG prices

could exceed $2 per Mcf and demands would still be greater than 2.5 trillion

cubic feet that year. But under phased deregulation, there would be negli-

gible excess demands by 1980; in effect, the market for LNG is "made" by

strong regulatory controls. Phased deregulation would make LNG producers

and transporters losers."19

Of course there are always specific groups of potential gainers or

losers from industry-wide changes in regulatory policies. The losers from

phased deregulation like LNG companies are "special interests" not likely

to be mistaken for the general consumer, when the rationale of consumers'

interests is invoked for or against regulatory policy changes. The substi-

tution of LNG at $2 per Mcf for domestic natural gas at 80¢ per Mcf must

be considered a special interest proposal for solving the natural gas shortage

in the period 1975-1985.20

No attempt is made here to describe the full market for LNG, and LNC as
a "solution" to the gas shortage. This would require an analysis and fore-
casts of foreign reserves, production out of reserves, and of demands in
other countries than the United States. These would call for a world gas
econometric model. However, these demand forecasts for LNG are described In
detail in Chapter 5.

2U
But it should be noted that-these special interests are'economically sub-

stantial. The licencing of LNG contracts by the Federal Power Commission
would create large-scale new construction of storage facilities and of LNG
tankers in domestic United States ship years. These facilities add con-
siderably to the rate base for profit. regulation of wholesale pipelines
or retail gas utility companies, and this rate base is welcomed in a period
when the capital base from construction of pipelines in the 1950's has
been in a good part eliminated. Thus important parts of the pipeline in-
dustry constitute a group of beneficiaries from the shortage or of losers
from phased deregulation.
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Another group affected by changes in regulatory policies are producers

and distributors of crude oil in the United States. If the FPC price controls

were to be continued, and the resulting shortage given to industrial users,

then the demands for distillate and residual fuel oil would be substantially

increased (in the absence of a Liquified Natural Gas industry). The econo-

metric model has been used to simulate the changes likely to occur in fuel

oil markets, by assuming that alternatives are either "phased deregulation"

prices or FPC prices. Forecasts are then made of fuel oil demands in the

Northeast under these two sets of gas controls. They indicate that residual

demands will increase by 1.0 million barrels and distillate demands by .3

millionbarrels per day as a result of the gas shortage. Similar results

in sections of the country with even larger shortages indicate a substan-

22tial increase in fuel oil consumption from regulation. The loss of these

markets from "phased deregulation" would constitute another "interest group"

which loses from decontrol.

This is not to deny that some consumers are favored by regulation and

that they would lose if it were discontinued. Being able to get all the

gas demanded in 1970 prices for the rest of the .decade is a favorable

position, wherever created by strict regulation. It would be expected that

the income transfers away from these consumers resulting from "phased

deregulation" would exceed 1 billion dollars per annum by 1975 and 3.7

billion dollars by 1.980 (where the alternative to "phased deregulation"

would be a continuation of FPC regulation). This income transfer would go

2The procedure consists of finding that price P 2 in Figure 1.1 that clears
excess demands for gas (since the model does not recognize excess demands
for one fuel as the determinants of demands for another fuel). Then oil
demands at P*2 are compared with oil demands at P2.
22
-Forecasts cannot be made of increased fuel oil demands in the North Central

portion of the country, because of inability to construct a demand equation for
*fuel oil in which gas prices were a significant variable. This vagary of the
data of the 1960's prevents use of the approach in this paragraph for evaluating
the impact of the shortage where it is greatest on fuel oil demands in that region.
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23
from consumers with uninterrupted service to oil and gas.

But accompanying this loss from "phased" deregulation, there are

gains to those other consumers who otherwise would do without. The gas

not forthcoming at controlled prices is available for industrial and

commercial use in the northern parts of the country. The dollar gains

from deregulation, measured by the prices these consumers would be willing

to pay for this gas rather than do without in the period 1978-1980, is

forecast to exceed 2.5 b.llion dollars (in 1978) and 5.6 billion dollars

24
in 1980. Thus this group is expected to incur greater gains from dereg-

ulation than those who lose from no longer receiving the gas at lower prices.

Since these are all consumers--there would seem to be general gains from

deregulation for consumers as a group through phased decontrol at this

time. Only if the appropriate horizon for political decision-making were

less than two years would support for more regulation seem to make sense

from the point of large groups of consumers.

2.5. The Rationale for the Shortage and Regulation

Naming the "gainers" from phased deregulation is not to assert that

certain groups resisting deregulation benefit from the shortage, and that

they have influenced policy out of self-interest. The "demands" for regulation

2 3The amount of "gain",estimated from the simulation results described below,
is equivalent to Area A in the diagram in Chapter 1.

2 4This is equivalent to Area "C" in the diagram in Chapter 1, except that,

because consumers are doing without entirely, this area extends from the
level of consumption to zero levels of consumption as follows:

P

._~~~~n~~~~~~~~~~4~~~~
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\e ~~~~1
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Thus these losses are particular to the regulatory procedures used by the
Federal Power Commission and the state commissions of allocating the shortage
entirely to new consumers and to industrial consumers in the regions exper-
iencing excess demand.
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from special groups would not seem to have controlled the "supply" of

strict regulation to date--at least not in an obvious way, since losers

from deregulation compose a very motly group which seems to change rapidly.2 5

Rather than purposeful regulation, there would seem to have been a

classic failure of process in natural gas fuel price controls. The reg-

ulatory mechanisms were mandated by court decisions, calling for price

stability without reference to market conditions of production or demand.

These court decisions imosed a task on the Federal Power Commission that

it was not able to.perform; eventually the consumer was in fact made worse

off by their ceilings on prices, arrived at in the same way that more

appropriate ceilings are found for electricity prices. The failure of

controls as a means to benefit the consumer would seem to have been a fail-

ure of logic and perspective.

The failure of logic comes from reasoning by analogy.. The process

of regulation used by the Commission followed time-honored procedures.

The FPC dealt in calculations of historical costs, and in finding a fair

rate of return by comparing profit rates with those in other industries.

These methods of control had been an accepted part of public utility reg-.

ulation for decades. But these methods had not been applied systematically

In the late 1960's and early 1970's, residential consumers in most
parts of the country, and all consumers in the South Central part of the
country, gained from price regulation. Certain of the pipelines that had
very large reserves were gainers from price controls, because their field
purchase prices didn't go up-with new contract prices frozen under regulat-
ion. These groups no longer benefit from regulation. Certain of the
pipelines would gain in the future from continued regulation from the
sales of liquified natural gas; and certain oil producers experiencing
large increases in fuel oil sales in industrial regions consequent from
the gas shortage would continue to benefit from regulation.. Some residential
consumers, under firm delivery in the South, probably could expect a few
more years of consumption at low prices under regulation. Naming these
categories of producers and consumers as "losers" from the phase decontrol
and designating them as a coalition for continued regulation would not
appear to be credible at this time.
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to the gas industry, where costs of new reserves- even more expensive to

find--could not be determined from historical accounting data on old reserves.

New prices based on old costs guaranteed that increments to production

would in the long-run fall short of increments to demands. By asserting

that controls developed in one setting would work in the other, the regu-

latory agency made logical errors that undermined the efficiency of the

results.

To this was added the failure of perspective. Taking a two-to-three

year view of price ceilings, when industry reserve accumulation and product-

ion took place over much longer periods, was incorrect. Since this view

still predominates in legislative proposals for reform--where results are

expected from new price policies immediately--this part of the mistake could

well be repeated. The only question that remains is how long it will take

to understand these mistakes and to learn from them in revising regulatory

policy.
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CHAPTER 3:

THE STRUCTUREOF THE ECONOMETRIC MODEL OF NATURAL GAS

3.1. Overview of the Econometric Model

The econometric model developed for the natural gas industry has the

important characteristics of (a) simultaneously describing the behavior of

both reserves and production markets (b) describing the regional organization

of the industry at a disaggregated level and (c) accounting for the time-dynamics

inherent in the various activities of the industry. There are good reasons for

including this level of detail in the model.

In order to analyze the effects of alternative regulatory policies, it is

necessary that the industry be viewed as a complete system. Most previous econo-

metric studies of natural gas have investigated either supply or demand, but have

neglected the simultaneous interactions of the two. Balestra,L8 ] for exanmple,

in his classic study of the demand for natural gas by residential and commerciil

consumers, assumed perfectly elastic supply (as was probably justified for the

1950's and 1960's, since deliveries to final consumers were then made on an

"as needed" basis. However, this would not be valid for a model of the 1970's

where total demands for gas exceed production. Given that prices and other

variables now affect both production and demands, our model accounts for the

simultaneous interaction of output and demand at both field and wholesale levels

of the industry.

Regulation has been in effect for both field sales and trantport;tilon of

gas. Consequently two distinct sets of markets must be accounted or in modeling

the gas industry. Production and demand must be described in both the market for

reserve additions (gas producers dedicating new reserves to pipeline companies

at the wellhead price) and the market for wholesale deliveries (pipeline companies

selling gas on long-term contracts to retail utilities and industrial consumers).

Furthermore, the spatial relationship of these two markets must be modeled properly.
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These markets are regional in aature; reserve additions are contracted for

in regional field markets, and gas production is delivered by pipelines to

regional wholesale markets. These regional markets are interconnected through

the network of natural gas pipelines across the country. Individual whole-

sale markets receive gas from different combinations of producing markets,

so that it would be possible for a shortage of natural gas production to exist

in another wholesale region. In analyzing regulatory policy and its impact

on natural gas shortages, it is thus necessary to account for this spatial

organization of field and wholesale markets.

The time-dynamics of the different stages of reserve accumulation, of

production, and of demand are an important aspect of the model. Policy

questions center on not only how much production or demand will be forthcoming

at higher regulated prices, but also on how long it will take for the effects

of a new pricing policy to occ(Ir. Attempts are therefore made to ncludeL

appropriate time lags in all of the relationships of tile model.

A block diagram of the model is shown in Figure 3.1, and shlould provide

an overview of both the model's organization and the relationships between

field and wholesale markets. This diagram ignores (for simplicity) the

spatial interconnections between production districts and regional wholesale

markets, but it nonetheless provides a good starting point for understanding

the model's structure. We will therefore broadly survey each part of the

model with reference to the diagram and then discuss the individual modules

in more detail later.

3.1.1. Gas and Oil Reserves

Reserve additions are made up of new discoveries, and extensions and

revisions of previous discoveries. New discoveries include both associated

and nonassociated gas (associated gas includes both gas "dissolved" in produced
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oil and gas forming a cap in contact with crude oil). New discoveries also

provide the major component of reserve additions for oil.

The discovery process begins with the drilling of wells, of which some

will be successful in discovering gas, some will be successful in discovering

oil(with or without associated gas), and some will be unsuccessful (i.e.,

dry holes). Although wells are drilled in regions which offer some probability

of gas or oil discovery, many are drilled without an a priori expectation of

one specific hydrocarbon. As a result, the exploration and discovery process for

both gas and oil are considered simultaneously.

Drilling takes place under two modes of behavior, depending on whether

it is done extensively or intensively. On the extensive margin, few wells

are drilled, but those that are drilled usually go out beyond the geograph-

ical frontiers of recent discoveries to open up new locations or previously

neglected deeper strata at old locations. There the probability of discovering

gas is relatively small, but the size of any discovery may be large because

it would be the first in the region. On the intensive margin many wells are

drilled in an area already the source of gas production. Under these con-

ditions the probability of discovering gas is larger, but the size of discovery

is likely to be smaller.

The producer who is engaged in exploratory activity has, at any point in

time, a portfolio of drilling options available on both margins. In deciding

where to drill, producers make a trade-off between expected risk and expected

return, and thereby decide whether additional drilling will be extensive or

intensive. This choice between extensive and intensive drilling will be infltl-

enced by changes (or expected changes) in economic variables such as field

prices of oil and gas and drilling costs. The model developed here has an

1See Fisher [28].
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equation for wells drilled which is based on a rational pattern of producers'

responses to economic incentives in forming. their portfolios of intensive

and extensive drilling.2

Drilling alone does not establish discoveries in the model. Equations

are specified to determine the fraction of wells drilled that will be successful

in finding gas, and the fraction successful in finding oil. These "success

ratios" depend on whether economic incentives (e.g., price increases) result

in drilling on the extensive or intensive margin (and this must be determined

empirically). For example, suppose that the choice is on the extensive

margin. In that case the gas success ratio depends positively on the size

of gas reserve found per successful well (the larger reservoir is easier

to find), negatively on changes in the gas price (higher gas prices mean more

extensive drilling for gas), and positively on the oil price (higher oil

prices relative to gas prices result in more intensive drilling for gas since

oil becomes relatively more profitable).

Two equations determine, for gas and oil respectively, the size of

discovery per successful well. Discovery size is related to the number of

successful wells drilled previously, to the volume of previous discoveries

in that region (or to the "age" of fields there), as well as to gas and oil

prices. A larger number of previous successful wells means that discovery

sizes will be smaller, since the larger reservoirs are found earlier. The

"age" of fields itself is a fnction of how much previous drilling has been

done, so that size decreases with age. If economic incentives result in

2Economic incentives affect the number of exploratory wells drilled through
the determination of expected risk and expected return. This is done by
calculating returns as functions of current gas and oil prices, and also
through average drilling costs and the interest rate (reflecting captial
costs). Expected revenue per well is the sum of expected gas revenue and
expected oil revenue, where each expected revenue is the product of current
price, the estimated success ratio and the estimated size per successful well.
Expected risk is an estimate of the variance of expected revenue.
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extensive drilling, then higher gas prices (or lower oil prices) result in

larger discovery size as a shift is made to the extensive margin.

Finally, the model generates forecasts of new discoveries from this set

of equations. Total new discoveries (calculated for gas and oil separately)

is the product of number of wells, success ratio, and size of find per

successful well. This level of detail allows us to give explicit consideration

to the process of long term geological depletion as well as the role of risk

in determining the amount of exploratory activity. We account for the fact

that, from the viewpoint of exploration, oil and natural gas are in fact

joint products, and must be treated symmetrically. Also, this framework allows

for shifts in the relative proportions of intensive and extensive drilling

in response to changes in economic incentives,

Additions to reserves also occur as a result of extensions and revisions

of existing reserves. These xtensions and revisions for both gas and oil

depend theoretically on 1) price incentives 2) past discoveries of gas and

oil 3) existing reserve levels for both gas and oil and 4) the cumulative

effect of past drilling. In fact, extensions seem to be influenced most by

past discoveries and total drilling activity.3 Revisions of established

reserve levels, on the other hand, seem to be essentially proportional to

prior discoveries and reserve levels.

As can be seen in the block diagram, additions to gas reserves

are the sum of new discoveries, extensions, and revisions. Aside

from changes in underground storage, subtraction from gas reserves occurs

as a result of production. Similarly, additions to oil reserves are the

sum of new discoveries of oil, extensions, and revisions. Since our model

does not explain the production of oil from reserves, we do not determine

3Extensions can result from either exploratory or development well drilling.
Our model does not explain development well drilling, and therefore only
exploratory wells will be used to explain extensions.
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year end oil reserves.4

These partly engineering, partly economic equations determine additions

to reserves made by petroleum companies. If the natural gas industry were

not regulated, or if regulation of the wellhead price were ineffective (i.e.,

if the ceiling price of gas were the equilibrium wellhead price), this model

would also contain demand equations for reserves. In particular, the demand

for new reserves would be given by a wellhead price equation for pipeline

offers to buy reserve commitments at specified new contract wellhead prices.

Since 1962, however, there has been excess demand for new reserves, and thus

the demand function for new reserves has not been observable. Instead the

price has been given by the exogenous wellhead ceiling price.5

3.1.2. Natural Gas Wholesale Markets

The level of natural gas production out of reserves depends not only on

the size of the reserve base, but also on prices that buyers are willing to

pay for larger deliveries. The formulation of production supply in this model

has the marginal cost of developing existing reserves determine a particular

level of annual flow (e.g., by drilling development wells and then operating

them). Marginal production costs are dependent on reserve levels relative

to production, so that as the reserve-to-production ratio becomes smaller,

marginal costs rise sharply. The exogenous regulated price is assumed in

turn to set the upper bounds on marginal costs. Thus, as can be seen in

4Aseparate "sub-model" for reserve additions (as well as production out of
reserves) was constructed for offshore Louisiana, but is not shown in the
block diagram. Certain onshore data used for the exploration and discovery
equations described above were not available for offshore (e.g., detailed
success ratio data), and furthermore offshore exploration as well as production
depend to some extent on different variables than is the case onshore (e.g.,
the number of acres leased). The offshore submodel permits us to examine
additional policy alternatives relating, for example, to acreage leasing.

5Note that it is possible to have at the same time excess demand for new reserves
but clearingin production markets by running down the existing reserve-produc-
tion ratio. This was in fact the case in the late 1960's.
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the block diagram, the level of gas production out of reserves is a function

of both the field price of gas and the quantity of year end reserves in any

one production district.

The level of production out of reserves must be assessed relative to

the demands for that production after it has been transported to wholesale

markets by pipelines. The wholesale demand for natural gas production is

a function not of the wellhead price of gas but rather the wholesale price.

Average wholesale prices for gas are computed in the model for each consumption

region in the country through a series of pipeline price markup equations.

The price markups are based on operating costs, capital costs, and regulated

rates of profit for the pipeline companies.

Of course wholesale gas prices are not the only determinants of

wholesale gas demand. ·,Residential. and commercial demand, and industrial

demand, depend as well on :,the- prices of: alternative fuels

(including the wholesale prices of oil), and "market size" variables such

as population, income, and investment which help determine the number of

potential consumers. Separate residential/commercial and industrial equations

are formulated for each of five regions of the country. There is a third

category of natural gas demand which is formulated within the model, and

that is the demand for gas as field extraction fuel. A certain quantity

of gas is used as fuel for operating pumps to extract gas from the ground

in the thirteen major producing states, and although this quantity is small

it should be modeled to determine properly the total gas demand.

Natural gas is competitive with fuel oil both in industrial and resldential/

commercial markets. When analyzing the impact of alternative regulatory

policies, it is desirable to determine not only the changes in the demand

for'gas, but also how changes in gas demand are related to changes in oil

demand. We would like to know, for example, whether a decrease in the demand
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for gas resulting from a higher price of gas results in an increase in the

demand for fuel oil, as well as how changes in the price of fuel oil affect

the demand for natural gas. The model therefore contains a set of wholesale

demand equations for fuel oil. Fuel oil demand is disaggregated into residential/

commerical demand (for numbers 2 and 4 oil) and industrial demand(for number

6 residual oil). Separate equations are estimated for each of three consuming

regions: the North East, the North Central, and a "South" region which includes

the South East, South Central, and West regions of the country. The fuel

oil demand equations have the same structural form as do the natural gas

demand equations, thus making it possible to compare changes in oil and gas

demand in a consistent manner. As can be seen from the block diagram,

these demands for oil depend on the wholesale prices for both oil and natural

gas, and also on the same "market size" variables as gas demand.

The determination of natural gas production at the wellhead and,

concurrently, the volumes delivered to buyers in wholesale markets, is

accomplished in the model by an input-output table connecting production

districts with consuming regions. A flow network is constructed which, based

on the relative flows calculated from 1971 data, determines where each consuming

region obtains its gas. This flow network also determines the pipeline

price markups for gas, since those markups are functions of the volumetric

capacities of the pipelines as well as the mileages that gas must be trans-

ported across the country.

Once the model has been spatially closed, wholesale deliveries can be

determined and summed to produce total deliveries for each region of the

country. Then, given the forecasted demands from the wholesale demand equations,

we can forecast excess demand on a regional basis.
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3.2. Structural Equations for Gas and Oil Reserves 6

The process of exploration and discovery, and the resulting accumulation

of new reserves, are probably the parts of the oil and gas industry that are

the most difficult to capture in a conceptual model. The exploration and dis-

covery process is complicated, and has not been studied (or modeled) in detail

by engineers. Thus structural econometric relationships formulated to link

economic, geological and technological variables that govern reserve additions

are likely to be rather crude at this time. Attempts are made here to for-

mulate those relationships that show clearly the effects of regulatory policy,

and that can be said to be based on maximization assumptions.

The model for reserve additions describes the process of generating new

discoveries of oil and natural gas in two stages. The first stage describes

investment in exploration under conditions of geological uncertainty and

a continuing process of depletion of the hydrocarbon resource base. Exploratory

companies are assumed to choose a level of investment that maximizes the firm's

value after balancing expected returns against the expected risks and

corresponding costs involved in exploration. Combined with a characteri-

zation of costs of exploration and development, this analysis leads to an

expression for the number of exploratory wells drilled in each production

district. In the second stage, the model predicts the parameters of the

size distribution of drilling prospects, and updates them from period to period

This section and section 4.3 are based on Krishna Challa's Ph.D. dissertation

"Investment and Returns in Exploration and the Impact on the Supply of Oil and

Natural Gas Reserves," M.I.T. Sloan School of Management, 1974.

Thus an. attempt is made to go beyond simply connecting independent and dependent
variables in a "black box" formulation. At a number of places in the model
particular relationships are posited from maximization of producer or consumer
utility. At other places, however, where theory failed us, "black box" formu-
lations are involved.
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to reflect the continuing process of reduction in prospects as well as new

information on geological and economic variables. Equations for the ratio

of successful to total wells, and for the size of discovery (conditional on

a success), are formulated so as to depend on these parameters. Discovery

volumes are then the product of wells drilled, success ratio, and discovery

size per successful well.

Additions to proved reserves also occur as a result of extensions and

revisions of existing fields and pools. Extensions and revisions are modeled

as functions of'previous discoveries, exploratory wells drilled, existing

levels of accumulated reserves and production, and an index of geological

depletion.

3.2.1 The Number of Exploratory Wells Drilled

The aggregate industry function for exploratory wells drilled is, of course,

the composite of the individual drilling decisions of several explorers

operating simultaneously. The individual driller makes his decisions after

taking into account the currently available information that can help him

ascertain expected return and risk in exploratory drilling, as well as the

relevant costs. Individual firms have a range of drilling options available,

each with its own expected risk and expected return, and a set of options is

chosen that maximizes the present value of the certainty equivalent net

cash flow resulting from exploration. To obtain a "certainty equivalent"

there must be a measure of the risk in any chosen set of drilling options;

we assume that risk can be represented by the variance of the cash flow, so

that the present value in certainty equivalent terms of the net cash flow

th
to the jth firm is given by

Vj = (l/r)(j - Xaj) (1)
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where Ij is the total end-of-period cash flow to firm , j = E(jT) is the

expected value of Ij, qj is the variance of I.j, X is an index of risk aversion,

and r is a long-term market interest rate.8

Now let-us examine how each firm can choose drilling options that will

maximize V. At any point in time there is an inventory of undrilled prospects

about which some'information is available. Maximizing behavior on the part of

the risk-averse explorer leads to the choice of prospects that yield the

highest expected return for a given level of risk, or, conversely, prospects

that have the lowest level of risk for a specified mean return. These

prospects are on an efficient frontier which may be represented as an upward

sloping curve in the risk-return plane, as shown in Figure 3.2. The frontier

includes small and relatively certain prospects (which correspond to intensive

drilling) such as point B, as well as large but less certain prospects

(corresponding to extensive drilling) such as point A. The particular prospect

chosen would depend on the individual driller's preference for risk. The

more.risk-averse he is the more likely it is that he will'choose prospects

8This is based on the single-period mean-variance model for pricing of capital
assets under uncertainty developed by Sharpe [80], Lintner [50] and Mossin[62].
Consider a single-period world in which all investors are expected utility
maximizers whose investment decisions can be characterized by the maximization
of a preference function U(Wt, ei, Vi) where W is the individual's wealth
at the beginning of the perioA, e is the expected value of the cash flow to
be generated one period hence by the investor's portfolio,. and Vi is the variance
of this cash flow. If one assumes that aUi/aWi>0, Ui/3e >0 and DUi/aVi<O,
and that all investors have homogeneous expectations and hat transactions
costs and taxes are zero, then the certainty equivalent of the random cash
flow i has a risk discount equal to the product of the price per unit risk X
and the risk itself. The risk of the cash flow is given by the sum of its
variance and covariances with cash flows from other investment opportunities.
We assume that (a) the alternative to drilling is an investment at return r,
and (b) drilling risks are independent across firms (so that the probability
of success at a site owned by firm A is independent of whether or not firm B
drilled successfully at another site). Under these assumptions the covariances
are zero and the risk of a cash flow is given by its variance.
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Figure 3.2 Efficient Frontier

Var [73]
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yielding small but relatively certain returns - i.e., that he will drill

intensively.

Once a well is drilled, oil and/or natural gas might be

discovered. Suppose that in a given period the jth explorer is considering

drilling a set of independent prospects which are expected to yield mean

dollar receipts RW per exploratory well from oil and gas discoveries.

Let (RW)v represent the corresponding variance of dollar receipts per exploratory

well. The expected net return E(f) from drilling W wells may then be

expressed in terms of RW and Ce(W), the expected total costs of exploration

and development if W wells are drilled:

E(j) = WjR - C (W (2)

If RWGj and RWOj are the mean sizes of discoveries respectively of natural gas

and oil per exploratory well, (RWG), (RWO)v the corresponding variances, and

PGe and POe the expected prices of natural gas and oil respectively, then we

may write

RWj =k(RWGPG + RWOjPOe ) (3)

and E(.) = k(W.RWG.PGe + W.RWO.POe ) - Ce(W.) (4)
3 3 J J 3 3

where k is a multiplicative factor that accounts for the fact that discoveries

may be extended or revised later in the development process.

At

_ *

11ir



Probably the largest source of uncertainty in returns from exploration

is geological unpredictability, i.e. the randomness of discovery size. For

simplicity the economic parameters will therefore be assumed to be known with

certainty so that

Var () = W (RW) (5)

or Var (?j) = k2 W (RWG)V(PGe) 2 + W (RWO )V(poe)2] (6)

if no significant correlations exist between oil and gas discoveries.

Before we can determine the number of wells to be drilled we must examine

the components of total expected costs, Ce(j). These include the costs

of exploration CE and the costs of subsequent development activity CD.

Although there is little theory establishing a functional relationship between

exploration costs and wells drilled, we can observe that (a) costs vary in

total and at the margin from one production district to another, depending

on average well depth, rock permeability and other geological conditions,

and (b) costs per well in a given drilling district seem to rise with the total

number of wells drilled in that district within a specific period, i.e., average

costs are increasing. Based on these empirical regularities, exploration costs

can be characterized by a quadratic function, so that the costs of drilling

Wj wells are:

CE(W) + W + (W 2 (7)

The historical average drilling costs per well (ATC) vary from district to

district because of the geological conditions of depth, permeability and

porosity. Using the historical values of ATC, we posit that

-= so + 1ATC

which gives us

cEW+a. + a(w)2 a(8)CE(W) a a lWi + a2 ATC + a3(W)2

where a, al, a2 and a3 are constant parameters.
o 2 3
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The cost of subsequent development activity is governed partly by the

same geological factors that affect exploratory costs (e.g., depth, rock

permeability, shape of the decline curve, type of drive, etc.) and also by

the amount of reserves withdrawn from the ground. This leads us to assume

CD (W ) ko klWRWj + k2ATC . (9)

Substituting expressions (8) and (9) into (2), we obtain an expression for

expected net return of the fork.

E() = b + bW. + j)+ bW b(Wj) (10)

We now substitute equation (5) for oj and equation (10) for Wj in equation

(1), and then differentiate the resulting expression with respect to the

number of exploratory wells drilled (so as to maximize V). This gives

us the following expression for WXTj, the total number of exploratory wells

drilled by firm :

WXT co + c RW + c2 (RW)v + c3 ATC

Aggregating over all firms in the district,. we expect the same relationship

to hold:

WXT - c + clRW+ c2 (RW) + c3(AT) (11)

Here RW and (RW)V stand for the values of the mean and variance of dollar

receipts over all of the exploratory wells drilled 'in the district.

Because of the "one-period" nature of this formulation, the riskless

interest rate r cancels out and does not appear in the final expression for'

total exploratory wells drilled. This would be correct only if costs and

corresponding revenues occurred in the same period; but since there are in

fact considerable lags between investment outlays for exploration and the accrual

of revenues from discovered and produced reserves, we include an interest rate

term INTA as an additional explanatory variable in equation (11). Adding this



-79-

term, and substituting the aggregate average values of the parameters RWG,

RWO, (RW)V and (RWO)V, we obtain the estimating equation for exploratory

wells to be:

WXT- c +c l (RWGPGe + RW Oe ) + c 2 [(RWG) (CRWO) ( POe)2 ]

+ (ATC) + c4 (INTA) . (12)

3.2.2. The Geological Environment as It Affects Size of Discovery

A single production district will in general contain reservoirs of

distinctly different geological types. Following Kaufman et al. [41] we

assume that reservoirs can be classified into a finite number of geologically

homogenous subkpopulationsa'. A begins when an exploratory well leads-

to the discovery of'the first reservoir in a particular sub-population,

Drilling then continues in the sub-population until the economic returns from

drilling no longer compensate for the associated costs and risks.

This description of the physical evolution of a play relies on three

postulates suggested by Kaufman et al. [41], and supported by earlier empirical

studies including Arps and Roberts [6], Kaufman [40], and Uhler and Bradley [85]:

I. The size distribution of reservoirs within a sub-population is

lognormal.

II. Conditional on a discovery being made within a sub-population, the

probability that the discovery will be of a 'given size is pro-

portional to the ratio of that size to the sum of sizes of' as yet

wudiscovered reservoirs within that sub-population.

III. Conditional on a play beginning within a sub-population, the proba-

bility that an exploratory well will be successful in finding a new

deposit is proportional to the ratio of the sum of volumes of the
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ass et undiscovered. deposits to the total unexplored volume of potentially

hydrocarbon bearing sediment.

Postulates I and II together can be used to determine the probabilistic

behavior of the amounts of oil or gas discovered by each successful well in

the order of discovery. Postulate II implies that on the average the larger

reservoirs will be found first, and that as the discovery process continues,

sizes of discovery tend to decline. Postulate I, II and III together imply

that within a given sub-population, as the play unfolds, the probability

of success tends to decrease, as does the average size of discovery. The

result, then, is to shift the efficient frontier of Figure 3.2 towards the

left. This may in part be compensated for by addition of some new, hitherto

unknown, prospects to the efficient set, but these additions are the result

of new geological information acquired during the activity of exploratory

drilling in the previous period, and are relatively unpredictable.

3.2.3. The Size of-Discovery

We can now develop the dynamics of the size distribution of reservoirs

as drilling continues. Let 6k represent the mean rate of decline in the size

of new reservoirs discovered in the kth sub-population, expressed in volumes

of hydrocarbons per successful exploratory well drilled. Let k(t) be the

mean size of the discovery at time t in the kth sub-population, and sk(t)

a random variable representing the anticipated size of the next reservoir

discovered in this sub-population. Based on the postulates cited above, sk(t)

may be assumed to be lognormally distributed, at least to a reasonable approx-

imation. Then if WXS[tl, t2] denotes the total number of successful explora-

tory wells (gas or oil) drilled into the kth sub-population during the time

interval [tl, t2] the anticipated size of the next reservoir discovered at

time (t + h) would be lognormally distributed with



-81-

E[sk(t + h)l = ik (t) - 6kk (t)WXSk [t, t + hi

= k(t + h) (13)

and

,% 2 2
Var[sk(t + h)] = (t + h) ok (14)

2 2
= Vk(t)k for small h

where ok is the variance parameter associated with the lognormal density

th
governing sk. The parameters 6k and aok are characteristics of the k

subpopulation and are assumed to remain constant over the range of geological

depletion we are concerned with. Thus, over a small interval of time h, the

mean rate of decline in the size of discovery per successful well drilled is

E[sk(t + h)] - k(t) (15)P k (15)
k

Ik(t)WXS[t, t + h]

and the variance of the rate of decline per successful well (for small h) is9

Var[sk(t +h)]
= ak (16)

2k(t)

Under our set of assumptions, as long as an estimate of the mean size of

reservoirs k at some initial point in time is available, knowledge of the

values of the two parameters 6k and ok is sufficient to describe the dynamics

of the probability distribution of discovery sizes. This is true in the

following sense. Given an estimate of the mean size of k(to) at some

initial point in time to, we can predict (using (15) and (16) repeatedly) the

9As we will see in the next chapter, since the error variance in (16) is
constant over time, we can estimate 6k by ordinary least squares regression
to estimate the relationship in (15) without the expectation operator on
the left-hand side. The standard error of regression in this estimation
would directly give us a consistent estimate of the variance parameter o.
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mean size of discoveries, and the variance of the sizes, at any subsequent

point in time t. This holds as long as we know the number of successful

wells drilled into this sub-population WXS[to, t] during the interval

between t and t.

This procedure for determining discovery size distributions will have

to be modified however. Four modifications will be undertaken, with a goal

partly to improve the specification of the model and partly to facilitate

use of a better econometric procedure for fitting the model. First, although

it has been assumed that observations of Sk, the size of individual discoveries,

are used, we must use the average sk[t-0, t+e] of the sizes of all reservoirs

discovered in a specified small interval of time [t-e, t+e]. Second,

in equation (15), the term (sk(t + h) - lk(t))/Pk(t)

denoting an estimate of the percentage change in average size during the time

interval t, t + hi will be replaced by A(log Sk). We can rewrite

equation (15) in the more convenient form

log (sk(t + h)) = log (k(t)) - cOWXSkt, t + h] . (17)

The value of c, when estimated in a regression equation, provides a direct

estimate of 6k'

The third modification requires more detail. We have thus far assumed that

the parameter 6k, representing the mean rate of decline in size, is constant

throughout the evolution of discovery in a subpopulation k. This may not be ail

unacceptable assumption during the earlier stages, when the size of the as yet

unexploited resource base is very large relative to the amount of incremental

depletion occurring in one period. However, the rate of decline in discovery

sizes is likely to be greater when firms are close to exhaustion of the

resource base. To capture this effect, we define the following index of

accumulated exhaustion of the undiscovered resource base as a "depletion" index:
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Estimate of total Cumulative Current estimate
original oil or - production - of proved

DE gas in place to date resources
DEP = '

Estimate of original oil
(or natural gas) in place

i.e., DEPk(t) at any point in time t is the index of estimated potential

th
reserves still left in sediments of the k geological type at time t

expressed as a fraction of the total reserves originally in place. 6k may

then be expressed as a function of this index:

6k(t) - f(DEPk(t)) . (19)

A reasonable postulate would be

6k(t) = cO + clDEPk(t) (20)

where c and cl are parameters to be estimated.

Finally, each production district might well contain more than one sub-popu-

lation, and shifts in drilling across populations might occur in response

to changes in prices of natural gas or oil. Since the data on size of dis-

coveries are aggregated by production districts, observed average size of

discoveries might change in response to price changes because of shifts from

one sub-population to another. For instance, if on the average a given price

change motivates explorers to increase the proportion of extensive drilling

(i.e., drilling in high risk sub-populations which also have larger deposits),

the observed average size of discoveries aggregated over all the sub-populations

might actually show an increase. The magnitude of such shifts in aggregate

average size in response to price changes would be positively related to the

amount of new geological knowledge regarding deposits in, the district

which in turn has been conjectured to be proportional to the number of

successful exploratory wells drilled in the region in the recent past. Since

the value of 6 occurs multiplicatively with the number of successful wells

drilled (WXS) in the estimating equations (15) and (17), a natural way to

capture the price effects on the aggregated average sizes would be to use the
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specification 6 = f(DEP, PG, PO). Thus, the estimating equation (17)

may be modified to:

log(s(t + h)) = log(V(t)) + f(DEP, PG, PO)WXS[t, t + h (21)

where the function f( ) represents the mean decline rate of discovery sizes 6

aggregated over an entire production district.

3.2.4. The Success Ratio for Exploratory Wells

The discussion in the previous section is relevant conditional upon an

exploratory well striking oil or natural gas. In order to estimate size of find

per exploratory well, then, the formulation must be modified to take into account

the probability that any well will result in a success. Using postulates I, I1

and III of Section 3.2.2., it can be shown that once exploration in a sub-

population has begun, the probability of a success tends to decrease monotonically

throughout the evolution of the play in a pattern similar to that derived for

the average discovery size. This leads us to specify a proportional relationship

between probability of success SR and discovery size (s). Thus as more explora-

tory drilling takes place in a given sub-population, we expect to find propor-

tional changes (declines) in average discovery size and success ratio. Olce

again, to the extent that we are forced to use size and success ratio data

aggregated by production district rather than by sub-population, we expect to

see some price effects on the mean success ratios reflecting shifts in the

relative proportion of extensive and intensive drilling in response to price

changes. The success ratio equation should then be

log(' ft) l '(,t> (22)
S(-(tO)7 log (t)) + fl(PG,PO) (22)

where fl ( ) is a function of the current and/or lagged prices of oil and

natural gas. The observed price coefficients in the success ratio equations

(unlike the average size equations) would also reveal any shifts in direc-

tionality in response to changes in the relative prices. For instance, if
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directionality is strong, a higher oil price might result in an increase in the

tendency to "drill for oil" rather than gas, which in turn would increase the

fraction of successful oil wells out of total exploratory wells.

We now have all the components for new discoveries of gas and oil. One

last point should be made, however, The size of discoveries per exploratory

well SW is defined as the product of the success ratio SR and the size of

discovery conditional on a success, S, i.e., SW = (SR)(s). It can be shown

that under our assumptions,

Var(SW)(SW) 24a02 (23)

where a2 is the variance of the distribution of size per successful well.

This relation provides a means of computing the parameters (RWG)V and (RWO)v

of the exploratory wells equation (12).

In smmary, a total of five structural equation forms must be estimated

for new discoveries of gas and oil. Equation (12) determines the number of

exploratory wells drilled, equation (22) determines the success ratio (esti-

mated separately for oil and gas), and equation (21) determines discovery size

per successful well (again estimated separately for oil and gas). The esti-

mation of these equations will be discussed in the next chapter.

3.2.5. Extensions and Revisions

Additions to oil and gas reserves also occur as a result of extensions

and revisions of existing fields and pools. Extensions are recoverable

reserves that result from changes in the productive limits of known reservoirs,

Following the discovery of a reservoir, a producer normally drills additional

wells to delineate the productive limits of the reservoir. In doing so, he

finds more reserves or less reserves than expected from the discovery well.

i Ln general, a substantial portion of extensions are realized withlii a year

or two following the reservoir discovery. This provides the following working
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hypothesis for the specification of the extensions equation:l0

Extensions = fl ( lagged lagged exploratory
t discoveries, wells,1 discoveries, wells, prices, depletio (24)

Revisions are the least predictable category of reserve additions. They

refer to changes in oil and natural gas reserve estimates brought about by

new information on reservoir characteristics such as porosity, permeability and

interstitial water. They result from improved estimates 'of the size of

previously known reservoirs, mostly made without new drilling. We have little

economic explanation for the observed size of revisions. Since the total

amount of proved reserves at the end of the previous year represents the size

of the base susceptible for revision, we expect this to serve as the main

variable for explaining revisions. Secondly, information can also arrive

from operations in a producing field; lagged incremental production of natural

gas (or oil) is therefore included as an explanatory variable. Finally, reserve

depletion should have a negative impact on the level of revisions. The

specification for the revisions equation is therefore of the form

agged incremental
Revisions = f2 year-end production, depletion (25)

reserves,

It is not expected that all of the variables on the right-hand side will figure

prominently, but a priori, year-end reserves are expected to have a significant

effect.

3.3. Structural Equations for Production of Gas

The relationships that specify the level of gas production out of reserves

are an important part of the model, since it is a shortage of production in

1As the basin is depleted of the richer prospects, it is reasonable to expect
the size of extensions to drop. The index of accumulated depletion DEP may
therefore be added as an additional explanatory variable on the right hand side.
However, it is likely that depletion effects on extensions are already reflected
in the functional relationship of (24) through its effects on discoveries and
exploratory wells. This is a matter to be resolved on the basis of empirical
evidence from econometric estimation. Similarly, an argument may be made to
include the price of natural gas (or oil) as an additional explanatory variable
on the grounds that incentive to gain more extensions is influenced by price
expectations. This too must be resolved empirically.
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wholesale transactions that affects government pricing policies in field

transactions. We saw in the 1960ts a general condition of depletion of the

base of proven reserves, as reserve-to-production ratios fell from 20 at the

beginning of the decade to about 12 at the end of the decade. Sufficient

production with falling R/P ratios cannot be had indefinitely; at some point

the amount of reserves available to back production is "insufficient", in the

sense that a gap is opened between the demand for production and the supply

that can be produced. The extent to which that gap occurs depends on the

characteristics of the relationships between prices, reserves and production.

The characteristics of production will depend on the extent of competition

among natural gas producers. In general we might consider three alternative

hypotheses that could apply to the structure of the natural gas industry:

(I) The industry is competitive (at the production level) so that the
supply price is simply the marginal cost of developing existing
reserves to achieve a particular rate of annual production.

(II) The industry is non-competitive, but whatever degree of monopoly
power individual firms have in the absence of regulation has been
stripped away by regulation. This would imply that the regulated
ceiling price is at or below the competitive price, so that
marginal cost pricing again applies, 11

(III) The industry is non-competitive, and existing regulation is not
sufficient to strip away all monopoly power. This would imply
that the regulated price is greater than marginal costs,

If the regulatory agency forced the company to lower its price below the

"competitive price", the quantity produced would decrease and would be

determined by marginal costs.

~lSome elaboration may be in order for the second hypothesis. Suppose that
only a single company, a monopolist, discovered and produced all of the gas
in some region of the country, and that because of regulation the company
were forced to lower its price from the profit-maximizing equilibrium level.
The quantity produced would then increase. As he ceiling price were lowered
the quantity produced would continue to increase until the oint at which
the average revenue and marginal cost curves intersected. That price could
be termed the "competitive price", and the corresponding quantity the "com-
petitive quantity", because at that point the monopoly has effectively been
stripped of all of its monopoly power, and behaves as though it were broken
up into a set of identical, competitive, unregulated firms.



The structural equations based on the first.two hypotheses are much the

same, since both imply marginal cost pricing. Let us therefore examine the

characteristics of marginal costs, and use those characteristics to con-

struct some alternative specifications for a production equation. Then we

will modify those specifications to account or deviations from marginal cost

pr.lcItg iii t wiy tlaL will all.ow or til 4Nlriltltrtl Hl)pcl l cttLlo, I atmic l (,ll

the third hypothesis.

The marginal costs for a production level q out of proved reserves R

depend upon the decline rate, discount rate, and other parameters. Assuming

a constant decline rate, a, in percent per year of production out of reserves,

a = q/R = 1/reserve-production ratio, (26)

we can write the proved reserve level as

0o

R q f -at dt = q/a. (27)

Then for a discount rate 6 the "present-Mcf-equivalent" (PME) of a constant

production level q is:

0

The next step in arriving at a marginal cost function is to specify a

functional form for the amount of development investment, I, needed to ob-

tain the constant production level q. Unfortunately, little theory exists

on which to base this specification, so that we must consider one or more

functional forms that follow intuitive reasoning about the behavior of

investment costs, and then test those functional forms by fitting them to

data. We will consider the following development investment function:

I = A + cea q, (29)



-89-

where A is a start-up cost, c is constant over the range of zero well inter-

ference, and is a parameter with value around 10. Thus, when a is small

(e.g., the reserve-production ratio is much larger than 10), I will be

roughly linear in q, but when a becomes larger (e.g., the reserve-production

ratio approaches 5), exponential increases in costs at the margin predominate.

The marginal development cost (MDC) is given by:

dI dI dq
MDC d(PME) dq d(PME)

8I da + aI . dq 
a dq aq d(PME)

Now we can substitute equation (29) for I into the right-hand side of

equation (30) to yield the marginal development cost function:

MDC X (s eaq + ceBa) . 6

= (Ba + 1) ce a a + 6

2
a (31

= (Ba + 1) c6ea ( + ) (31)

During the 1970's we can expect reserve-to-production ratios no greater than

10, so that a"' should be at mast 0.1. A reasonable value for the discount

rate is also 0.1, so that the above marginal cost function could be close to:

MDC = 4(Oa + 1) c(ea a c 0e (32)

Aside from its fit to recent data, this formulation is appropriate because

it has implications for production under conditions of declining reserve-

production ratios. To analyze such conditions, we will in fact consider two

exponential approximations to equation (32):

MDC = a 1qt'j /R t
-- _tj _ X __.'
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and

lq -t, j-2Rt,j
MDCt j = e (34)

Setting the wellhead price of gas PGtj at time t in region j equal to the

marginal development cost,1 2 and taking the logs of both sides of (33) and

(34) results in the.structural equations:

q = 'R + 'R log PG (35)
t,j 0 Rt,j + t,j t,j (35)

and qj = a' + ' log PGt.j + aR t j (36)

Let us now go back and consider an alternative investment function which

also has "reasonable" characteristics:

I = A + ce(a 6)/6(37)

This investment function is also exponential, but it is more flat in the

range of a < 6. Now for this function marginal cost is given by:

(a-6)/6 2 2
MDC = ce (a + 6)2/62R . (38)

Again, setting price equal to marginal cost and assuming that a 6 0.1,

we have

% 0 (a-6)/6PG t~j e (39)
PGt,j R e

After taking logs of both sides, we then have

qtj= 'Rtj + 6 R log Rt, + 6 Rtj log PG * (40)t,j o t,j t,j

12Under the first two hypotheses price is set equal to marginal development
costs in present-Mcf-equivalents. Assuming all present and future production
costs to be included in I, and the competitive price constant over time, the
discounted sum of all present and future profits is given by P(PME) - I, which
when maximized, yields P = dI/d(PME).
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Assuming that 6 is a parameter to be estimated (and expecting its estimated

value to be close to 0.1), we would estimate the structural equation:

qtj aRt + 6 R,log (RtPG ) (41)t~ 0 tj tj tj t,j

All of the formulations described above assume that either of the hypotheses

(I) or (II) hold, or that regulated prices are equal to marginal costs. It

is straightforward to modify these formulations to account for deviations from

marginal cost pricing and thus provide a means for testing hypothesis (III).

Setting marginal revenue equal to marginal development cost we have

Pj(1 + l/njej) MDC (42)

where n. is the number of equivalent equal-sized firms in region j,and e.

is the market elasticity of demand in region j.13

The alternative estimating equations (35), (36), and (41) can now be re-

written to include this term that accounts for varying degrees of competition

in different regions:

qt,j = aRt ; + aRtj log PGt j + a2 log (1 + 1/njej) (43)

qt, = a + al log PGt,j + aRt, + log (1 + 1/njej) (44)

j r + Rt, log (Rt,j PGt j) + a log (1 + 1/n e ) (45)

Since the number of firms is different in different production regions,

we would expect the last term in each of the above equations to be statis-

tically significant when the equations are estimated. If this term is8 not

13
This formulation, consistent with both the Bain and the
earlier Cournot analysis, is probably the most general model of imperfect'
competition subject to estimation by a regression equation. See W.S. Vickrey,
Microstatics, Harcourt, Brace & World, 1964, pp. 337-339.
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significant that would cast some doubt on the validity of hypothesis (III),

and lead us to believe that marginal cost pricing indeed applies to the pro-

duction of gas out of reserves.

In summary, a total of six structural equation forms can be estimated

for gas production. Equations (35), (36), and (41) represent marginal cost

pricing (hypotheses I and II) for alternative investment cost formulations;

equations (43), (44), and (45) are the analogous forms that account for

deviations from marginal cost pricing (hypothesis III). We will test the

fit of all of these equations in the next chapter.

3.4. Equations for Reserves and Production of Offshore Gas

The discovery and production of natural gas in offshore regions is a

particularly important part of the econometric policy model. There are now,

for geological and economic reasons, high probabilities of 'finding large

discoveries offshore. As both gas and oil prices increase and more offshore

acreage is leased by the Federal Government, these regions will probably

provide an increasing share of gas production.

There are a number of theoretical reasons for including separate structural

equations for offshore reserves and production in the model. Reserve accumu-

lation and production take place under somewhat different engineering and

economic conditions from those onshore. For example, almost all drilling off-

shore is extensive in nature, while onshore tracts may be explored on either

the intensive or extensive margins. Also, drilling costs are much higher off-

shore (thus limiting offshore drilling largely to major petroleum companies),

and offshore leasing procedures of the Federal Government do not apply to

privately-owned onshore land (resulting in checkered patterns of drilled

14This section, as well as section 4.5, are based on Philip N. Sussman, "Supply
-a and Production of Offshore Gas Under Alternative Leasing Policies", unpublished

Master's thesis, Sloan School of Management, M.I.T., June, 1974.
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acreage offshore.5

There are also empirical reasons for constructing a separate model for

the offshore region. Different data are available on offshore drilling

activities. There is only very limited data available on gas and oil success

ratios offshore, so that the offshore discovery process must be modeled

without direct estimation of success ratios. On the other hand, there are

political limitations on acreage leasing offshore, so that acreage availability

is an additional source of explanation of offshore drilling activity.

The model here describes relationships between reserves and production

of gas off the coast of Louisiana and such policy variables as the new contract

field price of gas and the amount of acreage leased annually.l6 Important

exogenous variables are interest rates, the price of oil, and the number of

drilling rigs operating offshore. The model is shown schematically in Figure

3.3, and operates as essentially three interacting blocks that determine

respectively (1) total acreage, (2) producing acreage and (3) reserve additions

and production.

It is the practice of the Interior Department's Bureau of Land Management

to hold periodic auctions of acreage to be explored for oil and gas. Total

acreage leased by the Federal Government is by definition last year's total

acreage plus acreage leased this year minus acreage forfeited this year.

Forfeited acreage is primarily acreage leased five years ago on which

producible quantities of oil or gas were not found. Total acreagei.s an

1 5The Bureau of Land Management decides to accept bids for offshore tracts based
on a variety of considerations, including the degree of true bidding competi-
tion, environmental consequences, etc. Once a tract is leased, however, the
discovery of producible quantities of oil or gas must occur within five years or
else the lease is forfeited. This regulation encourages early exploration of
leased tracts and leads to discoveries relatively soon after the lease sale.

6The model pertains to Offshore Louisiana rather than the entire Offshore Gulf
of Mexico because data on reserve additions were not available for Offshore Texas.
One would expect, however, that the structural equations are valid for
other offshore Gulf of Mexico regions as well.
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important variable because it is a determinant of well drilling activity.

Without lease rights, no wells can be drilled at promising locations. Cumu-

lative acres leased, which is the total number of acres leased by the Bureau

of Land Management since 1954, also appears as a variable in the model, and

is one of the determinants of new producing acreage.

The second block in the model determines the amount of producing acreage,

and it contains only definitional equations. Producing acreage this year is equal

to producing acreage last year plus new producing acreage minus producing acreage

forfeited. The producing acreage forfeited is acreage that was producing in the

previous year, but is now nonproducing and is dropped from the leasing program.

NonLproducing acreage is equal to total acreage minus producing acreage.

The third block of equations, which is behavioral, determines reserve

additions and production from reserves. Reserve additions contain two com-

17
ponents: new discoveries, and extensions plus revisions. The discovery

process begins with the number of exploratory wells drilled, which is

18
determined by an index of gas and oil field prices together with total acreage.

The average discovery size per well drilled (whether the well is successful

or unsuccessful) is determined by a second index of gas and oil prices, as

well as the cumulative number of wells drilled (this last variable serving to

indicate a depletion effect in the model). New discoveries are determined

by the product of wells drilled and size of discovery per well.

The theoretical arguments that led to the specification of our onshore

Because of data limitations, offshore extensions and revisions could not be

modeled separately from each other,as was the case onshore.

18Because of data limitations, we include in offshore exploratory wells only
wildcat wells, which are wells drilled in areas that have not yet been shown to
contain gas or oil. Our onshore equations use a broader class of exploratory
wells, including those used to search for extensions of known fields.
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reserves equations cannot be extended completely to offshore. One reason

for this is that we cannot estimate a success ratio equation offshore.

Another reason has to do with particular geological conditions. Offshore

19
drilling costs rise considerable as the water depth increases. This is

important because the acreage leased each year has been at progressively

greater depths, so that in a given year with constant prices one would

expect a smaller increase in the number of wildcat wells drilled per

new acre than in the previous year. In order to embody these conditions,

the following specifications are used for well drilling and discoveries

per well;

WWT= b + b log ACT + b2 log Pog (46)

and

DG
WT CO + cl log CWWT + c2 log Pog (47)

Here DG is new discoveries, WWT is the number of wildcat wells drilled, ACT

is total acreage, CWWT is the cumulative number of wildcat wells drilled, and

P is a combined price index of oil and gas.
og

The quantity of new reserves added by extensions and revisions (XRG) will

also depend on well drilling, but here the relevant variable is field (develop-

20
ment) wells rather than wildcat wells. Extensions and revisions will be taken

to be a linear function of the number of field wells drilled (FWT) and the

19 For example, the cost of exploratory drilling on a lease 600 feet under water
is 2-1/2 times that at 100 feet and at 1000 feet it is 4 times that at 100 feet.

The cost of development well drilling at 600 feet is 1-1/2 times that at 100
feet, but at 1000 feet it is 8 times that at 100 feet.

20 Different well data is available offshore than onshore. Only exploratory well
data is available on shore, which is why our onshore extensions and revisions
equations do not contain field wells as an explanatory variable.
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number of producing acres in the previous year (ACP):

XRG = f(FWT, ACP_1) . (48)

The number of offshore field wells drilled is determined endogenously in the

model as a function of the number of offshore drilling rigs (DRO) and the

interest rate (INT), Drilling rig availability places a capacity constraint

on field well drilling, and the interest rate reflects capital costs.

FWT o f(DRO, INT) h (49)

Total offshore reserves can now be determined. They are equal to last year's

reserves, plus new discoveries (equal to (46) times (47)), plus extensions

and revisions, minus.current production.

Production of gas out.of reserves follows the same formulation as for

onshore, so that equations (35), (36) and (41) above would apply.. The

offshore production equation will differ in one respect, however, in that

total reserves should ppear in the equation with a longer lag than is the

case onshore. The reason for this is that development costs are much more

extended over time offshore because the construction of offshore pipeline

systems precedent to production requires not only extensive regulatory

review before construction, but in many cases the.completion of discovery

activities in a large block of leases.

Two more behavioral relationships are needed in the offshore model,

and these explain forfeited acreage and new producing acreage. Forfeited

acreage (ACRD) is explained as a function of the amount of acreage leased

(ACR) five years previously and an average of the total acreage (ACT)

five and six years previously:

ACRD f[ACR_5, (ACT_5 + ACT_6)/2] ((50)
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New producing acreage (A(PN) is explained by nonproducing acreage (ACN) one

and two years previously, the amount of new discoveries (DG) in the previous

year, and the cumulative number of acres leased since 1954 (CACR):

ACPN = f(ACN 1, ACN.2' DG 1 , CACR) (51)

The offshore model thus contains a total of twelve equations, of which

seven are behavioral (wildcat wells, discoveries, extensions and revisions,

field wells, production, forfeited acreage, and new producing acreage) and

five are identities (total acreage, producing acreage forfeited, producing

acreage, nonproducing acreage, and total reserves). Although the offshore

model contains less of a theoretical basis for describing reserves than is

the case onshore, it explains in some detail the process by which lands are

leased and become available for exploration and ultimately gas production.

This makes it possible to use the overall gas model to study the effects of

changes in acreage leasing policies by the Federal Government. Such policies

may play an important role in determining natural gas availabilities over

the coming years,

3.5. Pipeline Price Marklp Equations

Pipeline companies purchase gas from producers and sell it to other

pipeline companies,to industrial consumers, and to retail gas utility companies

for delivery to final industrial, residential, and commercial consumers. The

pipelines buy gas at the field price and then add a markup based in part on

the transportation costs from production to consumption regions. The whole-

sale prices of gas paid by buyers from each pipeline are simply equal to the

average field price paid by that pipeline plus the various markups charged

by that pipeline.
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In modeling the pricemarkup we must consider those variables which directly

or indirectly determine the cost of transporting gas. One would expect that

the most important explanatory variable in determining the size of the

price markup is the distance over which the gas is transported; the greater

the distance between producer and consumer, the greater the transport costs

and thus the larger the markup. There are, however, economies of scale involved

in the transportation of gas, so that the cost per mile per Mcf decreases as the

volumetric flow through the pipeline increases. Thus we would expect that some

measure of volumetric capacity in the pipeline system would also be an

important explanatory variable in determining the markup, and we would

expect to find that, other things being equal, pipelines with larger volu-

metric capacities would charge smaller price markups.

Other economic variables should affect the size of the markup. The level

of total pipeline sales should be another determinant of economies of scale,

and as the level of total sales increases we would expect a decrease in the

size of all markups. It is also important to include some variable that

reflects the capital costs of the pipeline. We use the interest rate as

a variable to reflect capital costs, and expect the interest rate to be

positively correlated with the markup.

Finally, we would expect that as the amount of competition between pipe-

line companies increases, the size of the markup would decrease. The markup

equations should include an index of the degree of competition as an independent

variable; here we use the Herfindahl index

N

H. = l 2 (52)
J i=l ij

where H. is the index for the jth consuming region, x.. is the fraction of gas
I 10
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consumed in region j provided by company i, and N is the number of firms

operating in the jth consuming region. 2

The general form of the pipeline price markup equation is thus

PGW - PG = f(Mj ,Vj SALESj ,INTt ,H) (53).j~t j~t j,t j,t' ,t 'J

Here PGW is the wholesale price of gas, PG is the average wellhead price (on

both old and new gas), M is the average mileage between producing and consuming

regions, V is volumetric capacity, INT is theinterest rate, SALES reflects

average annual sales, and H is the Herfindahl index described above.

Since

N

Z ixij =

the Herfindahl index will always lie between 0 and 1. A value of 1 usually
is taken to indicate monopoly and a value of 0 to indicate perfect competition,
but such values are not definitive.
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3.6._ Structural Equations for Wholesale Demand for Natural Gas and Fuel Oil

In this model wh6lesale demand for natural gas is disaggregated both

by region and by type of user. This is necessary because the buyers of gas

differ from region to region, and among themselves in each region. Price

elasticities of demand differ across regions, as do the determinants of the

long-run growth in demand (as a result of different degrees of industrialization,

differences in housing, etc.). Also price elasticities and the determinants

of the growth of demand are expected to differ between residential and industrial

22
classes of consumers.

The wholesale demand for fuel oil is modeled in the same regional "markets"

as wholesale natural gas demand. Since fuel oil is not transported across

the country through a fixed pipeline network, the markets in which it is sold

are not the same as those for natural gas. On the other hand, fuel oil and

natural gas are competitive with each other both in industrial and residential/

commercial markets, and when analyzing the impact of natural gas regulatory

22
One might argue that industrial demand for gas should be further disaggregated,
since there are three broad uses of natural gas by industry, and for eachl use
the quality required of the gas (and thus the price paid) is somewhat different.

Gas used for chemical processes must be of extremely pure quality and may
be sufficiently unique to that process that there are few substitutes. A
second use for industrial gas is for boiler fuel, and here the gas need not
be very pure and competes with oil and coal. The third (and smallest ) use
of industrial gas is for electricity generation and transportation, and here
too, the quality of the gas need not be very high (so that there is substituta-
bility), since this is again for boiler use. Contracts for industrial gas
are also made on either a "firm" or an "interruptible" basis. Firm contracts
require that gas be supplied throughout the year at a more or less constant
flow rate, while interruptible gas may be supplied only in the off-peak season
when there is excess capacity. In this model all industrial gas sales are
aggregated together. One reason for this is that it is difficult to obtain
data on industrial gas sales broken down by use or by quality; pipeline
companies must report to the FPC gas sales to each industrial firm, but ticey
do not report the ultimate use or quality of the gas sold. Similarly, 11 Is
difficult to separate "interruptible" from "firm" sales, particularly silIt? -
the proportions of each purchased even by individual companies will chiangil over
the year, so that data series disaggregated in this way will necessarily 1e)
quite noisy.
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policies, it is desirable to be able to determine how changes in gas demand

are related to changes in oil demand. Thus, in constructing fuel oil demand

equations we use the same regional breakdowns as for natural gas demand.

Fuel oil demand is also disaggregated into residential/commercial demand

(for Nos. 2 and 4 oil) and industrial demand (for No. 6 residual oil).

3.6.1. The "New" Demand for Natural Gas

Our objective is to construct demand equations that relate, for each

wholesale market region, the quantity of natural gas demanded to the

wholesale price, the price of alternative fuels, and "market size" variables

such as population, income, and investment, which determine the number of

potential consumers. In all of our equations, rather than explain the level

of total demand, we use as the dependent variable the level of additional or

"new" demand, which we denote by 6Q.

In the short run, as Balestra has shown in his classic study of resi-

dential gas demand [8], the level of total demand should be relatively price

inelastic and would simply depend on the total stock of gas-burunhig apl llceC

in residential and industrial use. New demand, however, should respond to

the price of gas and to the price of competing fuels; decisions to buy new

appliances are affected by fuel prices. The new demand for gas, 6Q, is made

up of the increment in total gas deliveries Q = Qt - Qt-1' plus the replace-

ment of run-out agreements with old buyers so as to allow for continuation of

old deliveries. To find replacement, total wholesale gas demand could be

considered to be a function of the stock of gas-burning appliances, A:

Qt = XAt,

where is the (constant) utilization rate. Then, if r is the average rate

at which the stock of appliances depreciates, the replacement demand for
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gas equals rXAt1' and total new demand is

6Qt = AQt + rAt (55)

Now substituting (54) into (55) gives

6Qt = AQt + rQt- (56)

so that new demand for gas is the sum of the incremental change in total gas

consumption (AQt) plus the demand resulting from the replacement of old

appliances. It is this new demand that Balestra has shown to be sensitive

to the price of gas, as well as to the prices of competitive fuels such as

oil.

Our a priori assumption on causal factors is somewhat more general

than Balestra's. It is posited that new wholesale demand depends on wholesale.

gas and oil prices as well as total income and population (operating through

purchases of new appliances by final consumers). But it is also posited

that the level of total demand is itself a function of income and population,

so that new demand is also a function of. new" income Y and "new" population 6N;

6Y = AY + rY (57)
t - Ytt-l

Nt = AN + rN (58)
t t t-1

where r is the same depreciation rate described above. Thus an eqluatlon

for residential/commercial gas demand (TRCS) should have the general form:

6TRCStj f(PGWt jPFOIL Yt,Nt, 6Yt, N t,j)(59)

where PGWt is the wholesale price of gas in region j at time t, PFOILtj

is the average wholesale distillate oil price in the region, Y is disposable

personal income, and N the population by state.
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We would expect that our industrial demand equations should be similar

in form to those for residential/commercial demand. The prices of gas and

oil at wholesale are determinants of "new" demand, as are capital expendi-

tures by industry K (although with some lag, since capital expenditures

"gestate" into additions to the stock of working capital only after some

time). The level of total industrial demand should also be related to

overall industrial activity. The equation for industrial demand (TINS),

then, has the form:

6TINSt,j = f(PGWt j ,POIL t ,j ,VAM Kt )

where value added in manufacturing (VAM) is a measure of industrial

activity in state . When actually estimating equations (59) and (60) we

follow Balestra and specify linear relationships, There is no specific

theoretical motivation for linear demand equations, and an alternative

specification, which has some theoretical justification, s discussed i

the Appendix to this chapter.

3.6.2. Wholesale Demand for Fuel Oil

The equations describing the wholesale demand for fuel oil are similar

in form to those described above for natural gas. We relate the quantity

of fuel oil demanded to the wholesale price of oil, the-price of alternative

fuels (in this case natural gas), and "market size" variables including

population, income, and capital investment.

As was the case for natural gas, we use as the dependent variable the

level of "new" demand rather than the level of total demand. Thus our oil

demand equations resemble equations (59) and (60). Residential/commercial

(60)
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demand for oil (Q02) has the form:

6QO2t j = f(PFOILt,j PGWtj,Yt,jNtj,6Yt,jNtj (61)

and the equation for industrial demand (RSID) has the form:

6RSIDt,= f(POILt jPGWtj,6VAMt, ,Ktj) .(62)

Again, when actually estimating regression equations for (61) and (62) we

will specify linear relationships.2 3

3.7. Connecting Supply Regions with Demand Regions

To complete the specification of the model it is necessary to describe

how gas flows from producing regions to points of final consumption. The

interregional flows are important because they permit use of the model

for policy analysis and forecasting on a regional basis. Tn particular,

in a situation of excess demand, the flow table enables us to caltculate

the size of the excess demand in each consuming reglon, as well as the

amount of "underproduction" in each production district.

Here we designate a matrix for the interchange of gas supplies from

eight large production regions by the pipeline network with five demand

areas of the U.S. The interregional input-output matrix shows both the

fraction of each producing region's gas that goes to each demand area (gij)

and the fraction of each demand area's gas that comes from each producing

region (fij). The construction of this matrix is made necessary by the fa(t

that the average price of gas in each state within a demand region is

Note that the appliance depreciation rate used to calculate nw deimandl

may be different for oil than for gas. In fact, when these depreciation
rates were estimated, the value for oil appliances was found to be 0.10,

while for gas appliances it was 0.07. This will be discussed further in
the next chapter.
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dependent on both the wellhead prices and the quantities delivered from

each production region. Once the matrix has been constructed, i.e., once

gij and fij have been calculated, it then becomes possible to calculate

an "average wellhead price" of gas delivered to each state, PGi = ~PGjfij

where PGi is the average wellhead price of gas (before a pipeline markup)

delivered to demand region i, PG. is the wellhead price of gas in production

district j, and fij is the fraction of demand region i's consumption that

is supplied by production region j. The difference between the actual

wholesale price in the region and the average wellhead price is simply

the price markup charged to buyers in that particular demand region.

The input-output matrix enables the calculation of excess demand on a

regional basis. The average wholesale price of gas in each state deternline;

demand in the state, while the amount of gas acttzally provided Is tcettrnlclle(l

by adding the fractions of each production dstrict's output going nto tt

state (with the fractions again determined from the input-output matrix). The

difference between demand and supply thus calculated is excess demand:

EDi = Di - ZgikQk (63)

where EDi is the excess demand in region i, Di is the demand in region i,

Qk is the production of supply district k, and gik is the fraction of k's

production going to demand region i. The production shortage in regio k

24
can be likewise calculated from PSk = Qk - fjkDj

2 4One might ask whether it is reasonable to expect the input-output coefficients

fij and gij to remain constant over time. In the next chapter we will see how
these coefficients are calculated, and we will in fact find that they have changed
somewhat over the period 1966 to 1971. The question, however, is whether these
changes are largely random or are instead the result of a feedback mechanism in
the pipeline network system that alters the distribution of gas in response to
excess demands or price differentials across regions. An attempt was made to
empirically model price-dependent time-varying input-output coefficients, but
the data failed to support the thesis that this feedback mechanism has been the
cause of coefficient fluctuations. This result, together with the fact that
coefficient fluctuations have been relatively small, led us to use a static
framework for modeling interstate flows of gas. This will be discussed further
when we examine the empirical results in the next chapter.
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Special relationships must be established for intrastate flows

of gas. Because of the large differences between the wellhead prices

of interstate gas under FPC regulatory policy and intrastate prices not

under regulation, some production districts have experienced large changes

in the relative volumes of interstate and intrastate gas. It is impor-

tant that future changes in interstate/intrastate allocations that

occur because of the difference between interstate and intrastate prices

be properly accounted for in the model. Therefore, the static inter-

regional flow matrix is altered to allow for price-dependent changes

in the amount of gas delivered for transmission to interstate pipeline

companies in the gas producing states. If we assume that proportional

price increases for both interstate and intrastate gas will not affect

percentage allocations, then the allocation mechanism can be modeled

simply as

PCT f(Pin /Pout) (64)

where PCT is the fraction of gas production allocated to intrastate sales,

Pi is the average intrastate wellhead price, and Pout is the average inter-

state wellhead price. An equation of the form of (64) will be estimated

and used when the model is simulated to distrihute gas between nter-

and intrastate markets. Interstate gas can then be distributed via the

static input-output matrix. 25

25 We are modeling the pipeline network as it is, and not as we believe it

should be. Ideally gas should be distributed according to an optimal
feedback mechanism that prevents large excess demands from occurring in
some whoelsale regions while other regions experience market clearing at
low prices. An optimizing pipeline network model using mathematical
programming is currently being constructed as part of a Ph.D. dissertation
at M.I.T.
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3.8. Summary of the Structural Model

There are, in addition to the input-output matrix, a total of 22

structural equations that are behavioral in nature (i.e., that must be

estimated), and these are summarized in Table 3.1. Note that alternative

structural forms have been specified for some of the equations, and the

choice of one form over another must await econometric testing. Other

structural equations (e.g., onshore reserve equations) must be modified

before they can be fitted to data, due to statistical considerations that

will be discussed in the next chapter. Finally, some equations contain

explanatory variables, price indices, or parameters that must themselves

be estimated from structural specifications; these too are largely statistical

problems. The "specification" of the model as a whole has therefore been

completed only insofar as one or more structural forms have been designated

for each of the model's components.

There is a good deal of variability in the degree to which these

equations of the model are theoretically based. We have presented strong

theoretical arguments for the onshore reserve equations and for production

out of reserves. The price markup and wholesale gas and oil demand equations

have less theoretical justification, and the offshore acreage and reserves

equations could be considered "black box" representations. It is our hope,

however, that those parts of the model that tend towards "black box" at

least meet the basic test of being intuitively plausible,

In the next chapter we carry through the estimation of the model, in

a fashion that fills in the details of model specification. This involves

choosing among alternative equation forms, selecting particular exogenous

explanatory variables, and determining the exact lag structure for each

equation.
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Table 3.1

The Structural Equations

Block

Reserves
(onshore)

Production
(onshore)

Offshore Model

Price Markup

Wholesale Gas
Demand

Wholesale Oil
Demand

Interregional
Flows

Variable(s) Explained

Exploratory Wells (WXT)

Size of Discovery, gas

and oil (SZG, SZO)

Success Ratio, gas and
oil (SRG, SRO)

Extensions, gas and oil

(XG, XO)

Revisions, gas and oil
(RG, RO)

Production Out of

Reserves (QG)

Acreage, Reserves,
Production (WWT, DG,

XRG, FWT, QG, ACRD,
ACPN)

Wholesale Gas Price
(PGW)

Residential/Commercial
Demand (TRCS),
Industrial Demand
(TINS)

Residential/Commercial
Demand (QO2),
Industrial Demand
(RSID)

Input-Output Matrix

Number of
Equations

1

2

2

2

2

1

7

1

2

2

Equation Numbers
in Text

(12)

(21)

(22)

(24)

(25)

(35), (36), (41),

(43), (44), (45)

(46), (47), (48),

(49), (36), (50),

(51)

(53)

(59), (60),

(61), (62)

_ i 

- - - -- - -~ -C- ----
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APPENDIX:

WHOLESALE DEMAND FOR GAS

BY A REGULATED UTILITY

A large proportion of wholesale gas purchases are made by public

utility companies that operate under a regulatory constraint, and we would

expect that this constraint would affect not only the retail pricing

policies of the utility companies but also the characteristics of their

demands to buy gas from pipeline companies at wholesale. Let us therefore

examine the behavior of a profit-maximizing gas utility under a regulatory

constraint, assuming that the utility is a competitive buyer of gas from

the pipeline (i.e. it has no monopsony power), and that it re-sells all of

the gas that it buys to residential and commercial buyers.

The utility's behavior will depend on the demand functions of

final buyers, so that by positing alternative retail demand ormuilations

we can derive alternative models for wholesale gas demand by the utility.

In the analysis that follows we use the following notation:

Qg = quantity of gas sold at retail by the utility

w = quantity of gas bought at wholesale by the utility

P = retail price of gas
g

P = wholesale price of gasw

K e capital stock of utility

i = interest rate

s = allowed rate of return under regulation (assume that s i)

m marginal revenue of retail sales = -- (PQg)

We assume that the utility has only two major costs--the cost of

capital (rK) and the cost of the gas which it buys from the pipeline (PwQw).w w
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Assuming also- that the amount of capital needed by the utility (in the

form of storage tanks, pumps, underground pipes, etc.) is given by the

relation:

K = Y1QgY2 (Al)

with K taken as a long-run capital requirement, and with increasing

returns to scale so that 0 < 2 < 1. Finally, since over the long-run what-

26
ever goes into the utility at wholesale must come out at retail, we have

that Qg = Qw Thus the utility's profit

= PgQg rY1QgY2 - PwQg (A2)

is maximized subject to the regulatory constraint

PgQg - PwQg < Ks (A3)

The first-order conditions for the constrained maximum include

P m r-Xs Y2QY2-
w m 1-A Y1Y2Qg2 (A4)

and P P - yQ yY2-1 (
w g lg (A5)

Here m is the marginal revenue of retail sales, i.e.

aP
m=P +Q g(

g + aQ (A6)

When regulation is effective (i.e. when the allowed rate of return s is

smaller the rate of return which the company would otherwise obtain) equa-

tion (A5) determines the wholesale demand function in terms of the retail

2Thl i nt exnctly t rte, snce te it Ity nadtld Rlim 1tmii.miiilt'I 1'l(l "!t ; I a
the natural gas Lhat It buys at wholesale in order to give It an odor.
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demand function, and tais can be substituted into equation (A4) to determine

A, the marginal profit that occurs when the regulatory constraint is relaxed.

When regulation is not effective (i.e. s is higher than any rate of return

that the utility can obtain), A is equal to zero, and equation (A4) deter-

mines the wholesale demand function, again in terms of the retail demand

function.

In the general case equation (A5) determines the demand for gas

at wholesale assuming that regulation is binding. Unfortunately the alllowed

rate of returns will be different for different utilities, so t-hat this

equation may be difficult to estimate. If we assume that A is more stable

across utilities; and that

As << r,

then equation (A4) can be estimated directly to determine wholesale demand.

The problem here is that the marginal revenue at retail, m, may (depending

on the retail demand functioin) have a form that is itself difficult to estimate.

Let us study this in the context of two alternative retail demaid formilal ions.

A.l. Linear-Expenditure System for Retail Demand

We could begin by modeling residential and commercial retail demand for

28
natural gas as part of a linear expenditure system. Writing the system in

its static form, we have the utility function

n

u = E B1 log (qi-bi) (A7)
i=l

2 7Note that our utility does not behave according to the standard model of
the regulated firm. There is no Averch-Johnson effect, for example, because.,
there is no capital-labor (or capital-fuel) substitution -- the two inputs,
capital and fuel,have a fixed relationship to each other. Thus factor dematlds
are determined entirely by the regulatory constraint (as long as that colstaint
is binding).

2 8See Phlips [69] and Pollak and Wales [74].
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Here, bi is the minimum required quantity of good i, and we assume that

EZi = 1 and q-bi > 0 for all i. Maximizing this utility function subject

to the budget constraint yields

8 i N
qi bi + (Y-i iP bi)

Pi
where y is income. Note that by writing total expenditures on the ith good

as

N

Piqi = Pibi + i (Y- Pibi) (A9)
i=l

we see that the income remaining after the required expenditures pibi have

been made is allocated according to the proportions *i'

The marginal revenue function mi corresponding to the retail demand

function (A8) can be fomund by first taking the derivative of that equation:

ap -Biy + B i Z A
P i = jil pjbj P (A10)

aqi [q (1-)b qi - (1-a2)bi
i i qi

Pi i (All)
so that mi Pi -

qi- (1- i)bi

Equation (All)cannot be substituted directly into (A4); it is necessary first

to eliminate i so that the marginal revenue mi is written as a function of

only the quantity qi;

8iY - i P b
j i p b (A12)

Pi qi - (l-1i)bi

29
so that

29
Theoretically equation (A13)could be substituted for m in equation (A4)
and we would have a wholesale demand equation that related the wholesale
price of gas to the quantity of gas sold, per capita income, and the prices
of all other goods in the linear expenditure system. Alternatively, equa-
tion (A12)could be substituted into equation (A5) and a similar relationship
would result. In either case a highly non-linear equation has to be estimated
involving prices for most major components of consumption in the economy.
Since our objective is not to explain total consumption demand and its compouent:;,
but only natural gas demand, this use of a full linear expenditure system is
not promising.
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1 i - (lBi)b ) ( li1b - (A13)

A.2. Linear Medel for 'New" Residential Demand

Let us begin' instead with a retail demand function that has the same

form as the wholesale demand function described in Section 3.6.1 above.

Write new retail demand as

SQ = Q - (1-r)Qt =a a + a2PO + a Y (A1
t Qt o g,t 2 t 3 t

or equivalently,

P91t = bQ - blr t-1 + b 2Pt + b 36Y . (A15)

aP
Then g,t tThen aq = -blr (A16)

3Qt_ 1

and m = b - blAQt - 2blrQt-1 + b2POt + b3 Y (A17)

Now substituting (A17)into (A4), assuming As is small, and taking the

interest rate to be approximately constant, we have:

P = b-b - b - + + - _ QY2- (A18)
w o 6Qt blrQt- + b2POt 

+ b36Yt 1Y2Q t

or Qt + rQt- + aP + a2PO + a36Yt 4Qt2 1 (- 1 9)

Equation (A19)is an estimating equation for wholesale demand (by

public utilities) that accounts for the regulatory constraint.3 0
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Our ability to actually fit the equation, however, depends on the stability
of a4, which in turn depends on the Lagrange multiplier and the allowed
rate of return s. If and s are constant across states (as opposed to being
constant across companies within states), then a is a stable parameter and
(A19)can be estimated using a non-linear estimation procedure. There is still
the problem that the last term will be correlated with the error terms. In
order to obtain consistent estimates one must perform the instrumental
variable regression and then use a fitted series Q in place of Q on the
right-hand side of (A19). Note that POt is the retail oil price, ut presumably
a wholesale oil price could be used as a proxy.
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CHAPTER 4:

STATISTICAL ESTIMATION OF THE ECONOMETRIC MODEL

In this chapter we will discuss, using pooled cross-section and time-series

data, the estimation of the blocks of structural equations specified in the

last chapter. In most cases a number of alternative forms will be estimated

for each equation. In some cases these alternative forms will be based on dif--

ferent starting assumptions in the specification and will thus differ-consid--

erably from each other (e.g., production out of reserves equations). In other

cases the forms will differ only in lag structure or choice of exogenous var-

iables (e.g., wholesale gas and oil demand); here the theory suggests a gen-

eral equation form, but econometric tests are needed to determine the time

lags and particular exogenous variables that provide the best fit to the data.

In the next section of this chapter we concentrate on the explanation of

problems involved in estimating a model such as this, as well as on the par-

ticular econometric methods that were used. The data used, and the sources

of that data, are described in some detail in the following section. In the

remaining sections we present the estimation results themselves on a block-

by-block basis, following the order of the summary table of structural ,equations

in the last chapter.

The equations of this model cannot all be estimated using the same

regional groupings or the same time bounds. Obviously regional groupings

are different for field market and wholesale demand equations, but, even within

field markets, exploration and discovery equations use different regional

groupings than production equations. The reason for this is that in pooling

data we designate regions on the basis of homogeneity in certain characteris

tics, and the characteristics that are relevant depend very much on what it

is that is being modeled by the particular equation. Thus an equation des-

cribing exploratory well drilling can be estimated over all production districts

(with the exception of offshore Louisiana), since heterogeneities in the struc--
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ture of final sales are not relevant. These heterogeneities are very relevant,

however, to an equation that describes production of gas out of reserves, so

that in fact different production equations are estimated over four separate

and distinct groups of production districts. The regional breakdown for whole-

sale demand is based on a similar criterion; separate equations are estimated

for what we see as five separate "market" regions across the U.S., each of

which is roughly homogeneous.

The time bounds used in the regressions are also different for different

equations. This is the case for a variety of reasons. First, the time horizon

for which data are available for estimating one part of the model (e.g., explor-

ation and discovery) is different from that for data which applies to another

part of the model. However, even if data were available over a homogeneous hor-

izon, we might not wish to use all of that data in estimating particular equations.

For one thing, we would like the time horizon to reflect a period of structural

stability for the relationships described by the equation, and that period could

be different for different parts of the model. Also, we do not wish to Include

in the time horizon those years for which a particular equation is not Identi-

fiable. Thus, industrial demand equations for gas are estimated over the years

1963 to 1969, while residential/commercial equations are estimated over the years

1963 to 1971. This is done because there was already excess demand for indus-

trial gas by 1970, so that the demand equations would not be identifiable in

1970 and 1971.

The groupings and time bounds actually used are summarized for the equations

of the model in Table 4.1 They will be discussed in detail as we examine

the statistical results for individual equations in this chapter.

4.1. Estimation Methods

A number of problems must be considered when estimating a model such as

this with the data and groupings that have been used here. Of first importance

is multi-equation simultaneity and its implications regarding the assumptions
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Table 4.1
CROSS-SECTIONS AND TIME BOUNDS

FOR THE MODEL'S STOCHASTIC EQUATIONS

EQUATIONS

WELLS (WXT)

DISTRICTS POOLED

18 FPC DISTRICTS

TIME BOUNDS

69-72

DISCOVERY SIZE FOR GAS (SZG)
SUCCESS RATIO FOR GAS (SRG)
EXTENSION FOR GAS (XG)
REVISIONS FOR GAS (RG)

DISCOVERY SIZE FOR OIL (SZO)
SUCCESS RATIO FOR OIL (SRO)
EXTENSIONS FOR OIL (XO)
REVISIONS FOR OIL (RO)

WILDCATS DRILLED OFFSHORE
(WWT)
SIZE OF DISCOVERY PER
WILDCAT DRILLED (SZGW)
EXTENSIONS & REVISIONS FOR
WILDCATS (XRG)

PRODUCTION FROM RESERVES

(QG)
PERMIAN

GULF COAST AND MID-
CONTINENT

OTHER CONTINENTAL

LOUISIANA SOUTH (OFF-
SHORE)

PIPELINE PRICE MARKUP

I

**
20 FPC DISTRICTS

If

LOUISIANA SOUTH (OFFSHORE)

NEW MEXICO SOUTH, TEXAS 7C, 8, 8A

KANSAS, LOUISIANA SOUTH (ONSHORE),
OKLAHOMA, TEXAS 1, 2, 3, 4, 10.

COLORADO + UTAH, LOUISIANA NORTH,
MISSOURI, MISSISSIPPI, NEW MEXICO
NORTH, PENNSYLVANIA, TEXAS 6, 9,
WEST VIRGINIA + KENTUCKY, WYOMING

LOUISIANA SOUTH (OFFSHORE)

40 DEMAND REGIONS

These include Texas 1, 2, 3, 4, 6, 9, 10, California, Colorado + Utah,
Kansas, Louisiana North, Louisiana South (onshore), Mississippi, New
Mexico North, Permian (= New Mexico South + Texas 7C + Texas 8 + Texas 8A),
Oklahoma, West Virginia + Kentucky, Wyoming.

**
These include the above 18 plus Montana and Pennsylvania.

It

If

'I

'I

67-72
68-72
65-72
65-72

69-72
69-72
67-72
69-72

58-72

59-72

58-72

58-71

63-71

63-71

60-73

63-71



DISTRICTS POOLED TIME BOUND:.

RESIDENTIAL AND COMMERCIAL

DEMAND FOR GAS (6TRCS)
NORTHEAST

NORTH CENTRAL

SOUTHEAST

SOUTH CENTRAL

WEST

INDUSTRIAL DEMAND FOR GAS

(6TINS)
NORTHEAST

NORTH CENTRAL

SOUTHEAST
SOUTH CENTRAL
WEST

DEMAND FOR GAS AS FIELD
EXTRACTION FUEL (FS)

RESIDENTIAL AND COMMERCIAL
DEMAND FOR OIL (6Q0.2)

NORTHEAST
NORTH CENTRAL
SOUTHEAST + SOUTH CENTRAL
+ WEST

INDUSTRIAL DEMAND FOR OIL
(6RSID)

NORTHEAST
NORTH CENTRAL
SOUTHEAST + SOUTH CENTRAI
+ WEST

NEW ENGLAND, NEW JERSEY, NEW YORK,
PENNSYLVANIA, OHIO, MARYLAND + DELA-
WARE + WASHINGTON, D.C., VIRGINIA,
WEST VIRGINIA
ILLINOIS, INDIANA, MICHIGAN, WISCON-
SIN, IOWA, MINNESOTA, MISSOURI,
NEBRASKA, SOUTH DAKOTA
FLORIDA, GEORGIA, NORTH CAROLINA,
SOUTH CAROLINA, ALABAMA, KENTUCKY,
TENNESSEE
KANSAS, ARKANSAS, OKLAHOMA, TEXAS,
MISSISSIPPI, LOUISIANA
ARIZONA, COLORADO, IDAHO, NEVADA,
NEW MEXICO, UTAH, WYOMING, CALIFOR-
NIA, WASHINGTON, OREGON

(SAME STATES AS BEFORE)
If

I

'II

ARKANSAS, CALIFORNIA, COLORADO
KANSAS, LOUISIANA, MISSISSIPPI,
NEW MEXICO, OHIO, OKLAHOMA, PENN-
SYLVANIA, TEXAS, UTAH, WYOMING

(SAME STATES AS BEFORE)
It

-119-

EQUATIONS

63-71

rli

tI

.I

63-69

It

I,

68-72

64-70
II

II

II

II



-120-

of ordinary least squares regression. A multi-equation model which is

completely simultaneous across all equations should of course be estimated

using two-stage least squares, since the presence of simultaneity will result

in correlations between the additive error terms and the independent vari-

ables. Many large econometric models, however, are block recursive, so that

equations are simultaneous only within individual blocks of the model. In

this case two-stage least squares can be applied on a block-by-block basis.

Our model of natural gas is "almost" block recursive. Also, within some

blocks there is little or no simultaneity. The model can be broken up into

three large blocks of equations - for reserve additions, for production, and

the third for wholesale gas and oil demand - and the simultaneous nteraction

among these blocks is weak. For example, the set of equations for new reserves;

does not require simultaneous determination of wholesale demands, and while

additions to reserves have an impact on demands through wholesale prices, this

impact occurs over a number of years since price increases are rolled in.

Also, although equations for production out of reserves do contain total reserves

as an independent variable, and thus there is technically some simultaneity

between new reserves and production, the simultaneity can be ignored because

additions are a small portion of total reserves,and two-stage least squares

need not be applied to the estimation of production out of reserves. This is

not the case, however, with equations for wholesale gas demand and for pipeline

price markups. Thus two-stage least squares is applied to wholesale demand

equations containing unlagged price variables.-

There are important issues that must be discussed related to the charac-

teristics of the additive error terms, and how these characteristics should

be modeled when estimating equations. Let us write an equation to be esti-

mated as

Yjt~~~~~~. +

Yj e.js 2js tk+ (1)
jt = It1 + 2jt,2 + ' + kXjtk jt
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and let N = number of cross-sections
T = number of time periods
k = number of independent variables (including constant term).

Then we can write (1) in matrix form as

Y=XB+e- . (2)

Now it is probably unreasonable to assume that the error terms Ejt

are homoscedastic and independent both across time and across cross-sections,

i.e. that they have a covariance matrix of the form:

= _ E[e2 £' = I- . (3)

It would be quite reasonable, in fact, to expect that the error terms are

heteroscedastic, and that they may be correlated across time and across

cross-sections.

Let us first consider the problem of autocorrelation of the error terms.

If the equation is estimated by ordinary least squares (OLS), and If there is

autocorrelation, we can expect that the resulting estimates.will at best be

consistent and unbiased, but inefficient, as long as the equation does not

contain a lagged'dependent variable or independent variables referenced across

districts [32]. The Durbin-Watson statistic might indicate the presence of

autocorrelation in the error terms, but it will not tell us what part of the

autocorrelation is across time and what part is between cross-sections.

Furthermore, the standard correction techniques, such as Hildreth-Lu [34],

cannot be used directly since the autocorrelation is two-dimensional.

4.1.1. Cross-Sectional Autocorrelation

The problem of autocorrelation in the cross-section dimension is often

the result of a mis-specification that can be anticipated. Suppose, for

example, that new discoveries of gas (DG) is believed to be linearly related

to the number of wells drilled (W), so that the equation to be estimated is
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DGjt = O + -iWj t + (3)

It is reasonable, however, to believe that geological differences make

some regions richer in gas than others, and therefore the wells in those

regions have a higher average "output". Perhaps in any given year,

the same number of wells per district in each of two different districts

j and ' can be expected to result in different amounts of discoveries.

This would result in cross-sectionally autocorrelated errors in equation (3).

1Consider two different districts, j and J', with average "output ratios"

given by T DG
1 ~ ~~A~Z~S.)cL (i)

T W. j
t=l j,t

T DG.,t (ii)

and C- 
t= 1 j ,t

Thus, if the number of wells in these two districts were always the same,

we would still expect to find on the average that

DG , -j c. (iii)
j,t aj, j',t ii j t

A model, then, that would account only for the geological differences between

districts j and J' would be

DGj = 0jDGj, + c, (iv)

where the error term c is independent of J. Now if equation (iv) is
J,t

substituted for DGjt in (3), and the resulting equation is written with

£j t on the left-hand side, we have

c' =0 DG - = W + (v)
Ej,t 8jj'DGj,t J0 B1Wj,t + j,t (v)

But D t +0 + Wj , + and substituting this into (v) gives us

£, tjjl t 1, + + a + j j
£, t -+ e,t jj' o % + 0 Jt+ J Ejrt (vi)

2
so that E[Ej, t Ej,t ] = jja (vii)

and the errors are thus autocorrelated. Errors autocorrelated in time can ocOur

._~_ in the same way. Consider the regression equation Yt = Xt + t witlh ai Ilnec-
__ t t t

plained time trend; e.g., Yt = PYt-_ and Xt= ( Xt-hl 'rcen nt-l = Y'-l - I:t

-y t - BX t = PEt, so that E[e£t -tl]
= pe
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In order to account for such cross-sectional autocorrelation one should

_ estimate the equation using a full generalized least squares procedure which

2
provides a full error covariance matrix. With limited data the unrestricted

estimation of all off-diagonal elements of this covariance matrix can be

difficult (and in fact misleading) since the estimates themselves will have-

large variances. Furthermore, even if a full error covariance matrix could

be estimated, this generalized least squares procedure could be computationally

very costly. As a result, we felt that it would be preferable to introduce,

where necessary, regional variables (geological or economic) to explain

heterogeneity across districts pooled in the sample. If this is done properly,

most of the autocorrelation across districts can be removed. An equation for

new discoveries such as (3), for example, should be re-specified in the form:

DGj,t 0 jt 2j t (4)

where aj is a geographical "output" variable. Thus, although we will in fact

use a generalized least squares procedure, it is a limited procedure that

accounts for autocorrelation across time (and not cross-sections) - as well s

cross-sectional heterscedasticity.

4.1.2. Time-Wise Autocorrelation and Cross-Sectional Heteroscedasticity

Autocorrelation of the error terms across time will result from trends

in variables that are not explained by the structural specification. It is

a problem that ccurs frequently but that can be corrected relatively

easily. Cross-sectional heteroscedasticity of the error terms can also be

expected, since error variances in equations are likely to be larger for large

districts than for small districts. This problem can also be corrected.

When estimating the equations of our model we will assume the following

about the error covariance matrix Q = E[c E']:

2For a discussion of how this could be done, see Kmenta [45], pp. 512-514.
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22 2
with variances ou , ov' and aow It is assumed that u, vt, and wj are all

independent of each other and that E[ujuj,] = 0 for j $ j', E[vtvt,] = 0

for t t', and E[w jtwj t] E[w t,wjt] = E[wj, t,w jt] = 0 for j $ j' and
t t'.

Given these assumptions about the error vector ejt' one can write its

2 2 2
covariance matrix as Q = E[e E'] = a A + a B + a I . Note that is an

NTxNT matrix. INT is an NTxNT identity matrix, and A and B are NTxNT

matrices defined by

-T 0 . . . 0[ :-T
A = ° JT . . . 0

where J is a TxT matrix of ones, and
-J_

-T-TB_ = !v -- .

where I is a TxT identity matrix.

If" t vr cc on a a2 2 2
If the variance components aw, u, av are known, then the minimum vari-

ance estimate of is given by the GLS estimate = (X'Q-X))- 1 X'Q- Y. If the

variance components are not known (which would presumably be the case), then
Zellner's method [110] can be used, where consistent (but inefficient) es-
timates of - are obtained by OLS, the residuals are used to obtain consistent

2 2 2
estimates of aw, au, and av, and GLS is finally used to obtain a new (and

efficient) estimate of 3.
The problem with this method is that while it accounts for differences

in the variances of the error components, it does not account for hetero-
scedasticity or autocorrelations within each error component. Thtus, if the
error component that is cross-sectionally generated s itself heteroscedastic
or if its elements are autocorrelated through time, we will still obtain ii-
efficient estimates for (although the estimates will be more efficient than
those generated by OLS).
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2 2 (5)
E(C t) = a

E(ejtit) = 0 for j 6 i (6)

. pU.(7)
jt Pij,t-1 + Cjt

2
It is assumed that a. in equation (5) will be different for different j (cross-

sectional heteroscedasticity), although this will of course be tested. Equation

(6) states that the errors are cross-sectionally independent, but this assump-

tion will also be tested. Equation (7) assumes first-order serial correlation

in the errors. (Note that the correlation coefficient pj can be different for

different regions.) In order to test this assumption, and to correct for it,

it is important that equations do not contain lagged dependent variables,

and this will impose a restriction on the lag structure of our equations.

-- Finally, we can write the assumptions of (5), (6), and (7) in matrix form as:

2 .
a oP0 . . 0

0 2P2 . * _ (8)

20 0 .. . ?--N

T-1
p Pj pj

with P. = P 1 P PT-l (9)

i ·

T-l T-2 T-3
P p P 1

If for certain parts of the model this assumption were grossly incorrect,
then the generalized least squares estimation procedure would have to be
complicated by including cross-sectional correlation in the error covariance
matrix. Fortunately we did not find this to be the case.

Q1
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2-_ Our objective is to estimate equation (2) using generalized least squares,

i.e. to calculate

=(XQ lx) (X' -ly) (10)

4.To do this we must obtain consistent estimates of the parameters aj and p..

4.1.3. Estimation Procedure.

As long as the equation to be estimated contains no lagged dependent

variables we can obtain consistent (though inefficient) estimates of by

applying ordinary least squares. We begin, then, by applying OLS to the

equation using all NT observations. Then, we calculate the regression

residuals ujt and obtain estimates of p. from:
it i

.T

t j,t-1

J T

t=2 Jt-

with u =t - ujt (12)

4Our procedure is essentially that described by Kmenta [45], Section 12.2.
It should be pointed out. that other approaches exist to estimate models
using pooled cross-section and time-series data. One approach that is
commonly used involves the assumption that the error terms are made up of.
components that originate from different sources and that therefore have
different variances. The "residual" or "error components" model was first
suggested by Kuh [46], and later generalized and applied by Balestra and
Nerlove [9] and Wallace and Hussain [106]. The approach assumes that the
error term of equation (1) is made up of three independent components, one
of which is associated with time, one with the cross-sections, and the last
an independent random variable across both time and cross-sections, i.e.,
E. is given byj,t

E. =u +v +w
j,t j t jt

(footnote continued on p. 9a)
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where u is the mean of ujt over time. Thus equation (11) can be written

equivalently as

T

E U. U - (T-l)(u-)
t=2 jtujt-1 (T-(j)
Pi j- T (13)

(uj,t1 -uj)2

t=2

This can be shown to be a consistent estimate of p.5 For now we will

assume that the individual pj differ significantly from each other; if

this is not the case then a single estimate p can be obtained and the

estimation procedure somewhat simplified.

The equation's variables can then be transformed autoregressively as

follows:

jt jt j j,t-L

* A

'" Xjt1 jt 1 j, t-' 1
(1.4)

* A

Xjt,k Xjt,k - PjXj,t-l,k

* = A 
j Et - P;jt1 = Ejt

where cjt is just the non-autocorrelated part of Ejt. Ordinary least

squares is at this point applied to the following equation:

Y = X + e . (15)

Note that now N(T-l) observations can be used. The resulting regression

residuals, call them u t, can .be used to obtain consistent estimates of
it

5See Kmenta 45], Section 8.2. Kmenta assumes the mean of the residuals

Ui to be zero, and this would indeed be the case in a pure time series

regression or in a pooled regression in which the mean is taken over all
years and all districts. In a pooled regression, however, the mean of the
residuals over time for an individual district may not be zero, and our
formula for pj in equation (13) differs from Kmenta's in that we take

this non-zero mean into account.
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2the variances a.. First, we can get a consistent estimate of the variance

of Ejt (for each j) from

^2 1 * 2
a T-k l (ujt) (16)

=T - k 1 t

Then, since .= a (1 - P. (17)

3

we can obtain a consistent estimate of a2 from

n2

^2

Now equation (2) is estimated by generalized least squares using the

^2
estimates p and a that have just been obtained in the matrix Q. Equiv-

alently, ordinary; least squares can be applied to the equation

** ** **
Y =X + (19)

6 ** *
where Y. = Yj (20)it it/1~£j

Xti= Xjt ,i/ (i = 1,...k) (21)

3

Ejt = Ejt/o ·- (22)

i

The error terms E J in equation (19) are now homoscedastic and non-
jt

serially correlated. Thus the standard errors computed from the OI.S

estimates of (19) are consistent estimates of the standard deviations

Note that the weights in (20), (21), and (22) are the estimated standard
deviations (not variances) of the unaorrelated part of the error term.
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of the ,i' and the t-statistics can be interpreted accordingly. The R

of the regression may, of course, be scaled down (due to the trans-

formations of the dependent variables in (14) and(20) , but a lower R2

(as compared to simple OLS estimates) does not mean that there is "less ex-

planation". The statistic simply indicates the amount of variance

explained by the structural relationship, as opposed to variance explained

by trend, etc.7

Best linear unbiased (BLU) forecasts are obtained using the trans-

formed version of the equation, i.e. the estimated version of(19).8 Of

course, after a forecast simulation has been performed the variables must

be transformed back to their original form for purposes of analysis.

It may be that the pj's do not differ significantly across cross-sections.
If this is the case a single estimate of p can be obtained from:

Zlu. u

jt j,t-l

jt

Then OLS can be performed on the transformed equation (19) using a single
value of p.

One can also test to determine whether the error terms are indeed cross-
sectionally independent. This can be done by obtaining the residuals

ujt from the OLS estimate of (19) and calculating estimates of the covari-

ances oij from:

i;

j1
1- PiPj

1 T
where Cij T - k- 1 t=2 itjt

If these covariances are large a full GLS estimation would be necessary in
order to ensure efficiency. (See Kmenta [45]),

8Our estimator is best linear unbiased with the class of single-equation
estimators. More efficient estimates could result from the use of a system
estimator such as three-stage least squares.
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Certain equations in the model (e.g., the equations for wholesale gas

demand) must be estimated using two-stage least squares. In combining

this method with generalized least squares, consistent estimates are obtained

by first performing a GLS transformation on the equation, and then applying

two-stage least squares (TSLS) using the transformed variables. The steps

are therefore as follows: First, the parameters pj and a must be estimated

consistently. This means that TSLS, rather than OLS, is applied first to

equation (2) to obtain the estimates pj, and then to equation (15) to

obtain the estimates .. Then, using these estimated parameter values,

we apply TSLS to equation (19) , i.e., we regress X (or those components

of X believed to be correlated with the error term) on exogenous and

lagged variables in order to obtain a constructed instrument X , and

then perform ordinary least squares on

Y = X 8 + . (23)

This procedure was in fact necessary only for relatively few equations of

the model.

4.2. The Gas-Oil Data Base

All of the variables used in this model, together with their defini-

tions, units of measurement, and sources of data, are listed below. The

list of variables is divided into functional groups, including wells, off-

shore acreage, reserves, production, demand, and prices.

WELLS. Exploratory wells data are from the Joint Association
Survey of Drilling Statistics, for 18 FPC production
districts, for the years 1963 - 1972.

WXT: Total number of exploratory wells drilled.

9See Eisner and Pindyck [25].



Number of successful exploratory gas wells.

WXO: Number of successful exploratory oil wells.

SRG: Ratio of successful gas wells to total exploratory wells.

SRG = WXG/WXT.

SRO: Ratio of successful oil wells to total exploratory wells.

SRO = WXO/WXT.

SRG, SRO: Fitted values of the above two variables using the es-

timated success ratio equations.

CWXT: Cumulative number of exploratory wells drilled (WXT) from

1963 to year t.

t

CWXT = WXT,
t'=1963

WWT: Number of wildcat wells drilled. (Wildcat wells are-a more

narrow class of exploratory wells that excludes extension

wells.) From World Oil Magazine, for offshore Louisiana,
for the years 1958-1972.

CWWT: Cumulative number of wildcat wells drilled to year t.

t
CWWT = Z WWTt,

t,=1958

FWT: Number of offshore field wells drilled (i.e., all wells

except wildcats, including development wells and exploratory

extension wells). From World Oil Magazine, for offshore Louisiana,

for the years 1958-1972.

FWT: Number of offshore field wells drilled (i.e., all wells

except wildcats). From World Oil Magazine, for offshore

Louisiana, for the years 1958 - 1972.

DRO: Number of offshore drilling rigs. From World Oil Magazine,

for Offshore Louisiana, for the years 1958 - 1972.

ACREAGE. Acreage data are from: Outer Continental Shelf Statistics,

U.S. Dept. of the Interior, Geological Survey - Conservation

Division, Washington, D.C., June 1973. Data are for offshore

Louisiana, for the years 1954 - 1972.

ACT: Total acreage under supervision.

ACP: Producing acreage under supervision.

Non-producing acreage under supervision.

WXG:

ACN:
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Acreage leased.

New Producing acreage, ACPNt = ACPt - ACPt_ 1

(Assumption: no producing acreage forfeited)

Acreage forfeited, ACRDt = ACTt_l + ACRt - ACT

If ACRD is less than 0, then it is assumed that this amount
of acreage was given to the Bureau of Land Management from
the states by the courts.

Cumulative number of acres leased.

All data are from American Gas Association[American Petroleum
Institute/Canadian Petroleum Association; Reserves of Crude Oil,
Natural Gas Liquids,; and Natural Gas, for 8 FPC production
districts for the years 1964-1972. Units are millions of cubic
feet for natural gas, and thousands of barrels for oil. Ex-
ceptions to this are explicitly stated, and include offshore
data for L958-1972.10

Dummy variable for Louisiana South District.

Dummy variable for Permian District.

Dummy variable for Kansas, Oklahoma, TRRC Districts 1, 2,
3, 4, and 10.

Dummy variable for Colorado-Utah, and Wyoming Districts.

Total new discoveries of natural gas.

Total new discoveries of oil.

Total revisions of natural gas.

Total revisions of oil.

Total extensions of natural gas.

Total extensions of oil.

Natural gas extensions plus revisions, XRG XG + RG.

Year end reserves of natural gas.

Year end reserves of oil.

10
Reserves data for Offshore Louisiana are from The Special Report on
Louisiana Offshore (Zones 2, 3, 4), 1954 - 1972, by American Gas Associa-
tion, Committee on Natural Gas Reserves. Also, oil reserves data are

I--- available for 20 FPC districts, and were used in the estimation of equa-
tions, whenever feasible.

ACR:

ACPN:

ACRD:

CACR:

RESERVES.

DD1:

DD2:

DD3:

DD4:

DG:

DO:

RG:

RO:

XG:

XO:

XRG:

YG:

YO:



SZG:

SZO:

SZG, SZO:

2 2

aG' O:

PGCG:

PCGO :

DEPG:

DEPO:

PRODUCTION.

QG:

Q:

CQG:

Average size of gas discoveries per successful gas well,
SZG = DG/WXG.

Average size of oil discoveries per successful oil well,
SZO = DO/WXO.

Fitted values of the above two variables, obtained from
the estimated size of discovery equations.

Estimates of the variance over time of the size distribu-
tions of gas and oil discoveries respectively. These are
obtained from the estimated size of discovery equations.

Estimate of the total potential gas reserves in each dis-
trict as of 1963. From Potential Supply of Natural Gas
in the U.S., published by the Potential Gas Association,
Mineral Resources Institute, 1971.

Estimate of the original oil-in-place in the district.

Index of depletion of the natural gas resource base in
the production districts,ll

DEPG = (PGCG - YG -CQG)/PGCG

Index of depletion of the oil resource base in the produc-
tion district,

DEPO = (PGC - YO - CQO)/PGCo

Data are from AGA/API/CPA, Reserves of Crude Oil, Natural
Gas Liquids, and Natural Gas, for 18 FPC production dis-

trict F2 6
tricts, 2 for the years 1961-1972. Units are 10 cubic

feet for gas and 103 barrels for oil.

Total production of natural gas.

Total production of oil.

(Cumulative production of natural gas,

t

CQG = E QGt
t'=1963

11 See list of production variables for definition of CQG and CQO.

1 2 Production data for Offshore Louisiana are available for 1955 - 1973. The
source is The Special Report on Louisiana Offshore.

-
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CQO: Cumulative production of oil,

t
CQO= z QO,

t'=1963

DEMAND. Data are available for 40 demand regions, for the years

1962 - 1972. Units are 106 cubic feet for gas and 103
barrels for oil.

AL, AR,
AZ, CA,...,
WY: Dummy variables for the 40 demand regions (conforming to

the postal code except for NE New England).

TDUM: Dummy variable for time, such that TDUM = O if the year
is 1970 or later and 1 otherwise.

MS: Mainline industrial sales of natural gas by interstate
pipeline companies. Data on mainline sales by company and
state were extracted from the Federal Power Commission's
annual Form 2 reports of jurisdictional interstate pipeline
companies. This data was then aggregated into our 40 de-
mand region breakdown of the U.S.

INTRA: Total intrastate sales, determined by subtracting total
sales by producers of natural gas to interstate pipeline
companies (as determined from the FPC's annual Sales by
Producers of Natural Gas to Interstate Pipeline Companies)
from total state gas production (as determined from AGA/
API/CPA's annual Reserves of Crude Oil, Natural Gas Liquids,
and Natural Gas).

CS: Direct (retail) sales to communities by interstate natural
gas pipeline companies, as extracted from FPC Form 2 re-
ports, and aggregated as previously described.

TSS: Total sales for resale of natural gas as extracted from
Form 2 reports and aggregated over the 40 region breakdown.
This does not include sales for resale to other interstate
pipeline companies, but only to intrastate natural gas dis-
tribution companies.

FS: Lease and plant fuel sales. Extracted from Bureau of Mines,
annual Minerals Yearbook.

f: - The ratio of industrial gas consumption to total gas con-
sumption, both quantities as compiled by Bureau of Mines,
Minerals Yearbook.

TINS: Total sales going to industrial uses,

TINS = f · (MS + INTRA + CS + TSS)

TRCS: Total residential and commercial sales,

TRCS = (1 - f) (MS + INTRA + CS + TSS)
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QO.2: Oil quantities sold in the residentialfcommercial market,
obtained from API Petroleum Facts and Figures. The name
of the series is "Sales of Heating Oil, Grade No. 2, by
States, 1937 - 1970".

RSID: Oil quantities sold in the industrial market, obtained
from the above source. The name of that series is "Total
Sales of Residual Fuel Oils (All Uses), by States, 1934 -
1970".

PRICES AND ECONOMIC VARIABLES.

PG: New contract price of interstate sales of gas at the wellhead,
in cents per Mcf, by production district for 28 FPC produc-
tion districts, for the years 1952 - 1972. Compiled by
Foster Associates, Inc.

Average wellhead price, in cents per Mcf, by production
district for 18 FPC production districts, for the years
1962 - 1971, from Table F, FPC, Sales of Natural Gas.
Average wellhead prices for each of the eight aggregated
producing regions used in the pipeline price markup equations
were computed by weighting the average price on all contracts
for each FPC district comprising that region by the total
production in each district. In computing average wellhead
prices (before markup) for each consuming region (i.e., each
state), weights equal to the fraction of consumption coming
from each producing region are applied to the average producing
region prices.

Average wholesale price of gas, in dollars per Mcf, by

state, for the years 1962 - 1972. Determined from FPC
Form 2 Reports. This series is a weighted average price

for mainline sales, interstate sales for resale, and intra-

state sales of natural gas. It was used as the price of

natural gas in both the industrial and residential/commercial
equations.

Average price of mainline sales of gas, in dollars per

Mcf, by state, for the years 1962 to 1972. This is a

wholesale market price, determined from Form 2 Reports.

Average wholesale price of interstate sales for resale, in

dollars per Mcf, by state, for the years 1962 to 1972.
Determined from FPC Form 2 Reports. It is used as both the
residential and industrial sales for resale price.

Average wholesale price of intrastate gas, in dollars per

Mcf, by state, for the years 1962 to 1972. Determined
from FPC Form 2 Reports.

Wellhead price of oil, in dollars per barrel, by produc-
tion district for 20 FPC production districts, for the
years 1954 - 1972, from Bureau of Mines, Minerals Yearbook.

PW or PG:

PGW:

MP:

SP:

IP:

PO:
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POIL: Average price in dollars per Mcf-energy-equivalent of

fuel oil paid by electric power companies, by state, for
the years 1954 - 1972, from Edison Electric Institute,
Statistical Annual of the Electric Utility Industry. It
is assumed that this is the best available surrogate for the
industrial price of residual fuel oil.

PCOAL: Average wholesale price of coal paid by the electric utility
industry, in dollars per Mcf-energy-equivalent, by state,
for the years 1954 - 1972 (see POIL for source).

PALT: Price of alternate fuels, in dollars per Mcf-energy-
equivalent, by state, for the years 1954 - 1972 (see POIL
for source). This is a weighted average (over kilowatt-
hours generated) of prices of fuel oil and coal consumed
by the electric utility industry in generating electric
power. I

PFOIL: Average wholesale price, in cents per gallon, of No. 2 fuel
oil, by state, for the years 1960 - 1972, from Fuel Oil
and Oil Heat and Platt's Oil Price Handbook and Oilmanac.
This series was constructed from the two sources,by-taking
the average of the two sources in cases where there was
more than one observation for the same city from each
source. In cases where there was more than one city ob-
served per state reported, a weighted average was taken
by use of city population. In cases where there was no
observation at all, the price for an adjacent state was
used. (Eleven such assignments were made for states that
were very sparse consumers of No. 2 fuel oil.)

PWG: Average wellhead price of gas, in dollars per Mcf, for
Offshore Louisiana, for the years 1955 - 1973, from Outer
Continental Shelf Statistics, U.S. Dept. of the Interior,
Geological Survey - Conservation Division, Washington,
D.C., June 1973.

PWO: Average wellhead price of oil, in dollars per barrel, for

Offshore Louisiana, for the years 1957 - 1972 (see PWG

for source).

INTA: AAA bond interest rate (percent per annum), from Federal
Reserve Bulletin.

INT: BAA interest rate (percent per annum), for 1946 - 1973,
from NBER data base.

ATCM: Index of-average total drilling costs for exploratory
drilling per well, by production district for 18 FPC
production districts, from AGA/API/CPA's Joint Association
Survey. This is a time average over the period 1963 - 1971.

VAM: Value added in manufacturing, in millions of current
dollars, by state, for the years 1958 - 1971, from U.S.
Department of Commerce, Bureau of the Census, Annual
Survey of Manufacturers.
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CAP: New capital expenditures in the manufacturing industry,
in millions of current dollars, by state, for the years

--- 1958 - 1971 (see VAM for source).

VCC: Value of construction contracts, in millions of current
dollars, by state, from 1956 to 1972, from Statistical
Abstract of the U.S., and from F.W. Dodge Corp., Dodge
Construction Contract Statistics Service.

YY: Personal income, in millions of current dollars, by state,
from 1956 to 1972, from U.S. Department of Commerce,
Survey of Current Business.

NN: Population in thousands, by state, from 1955 to 1972,
from U.S. Department of Commerce, Bureau of Census,
Current Population Reports.

M: The weighted average distances from the centers of each
of the 18 FPC producing regions to the population center
of each consumption region, by state, for each of the 40
demand states. These were measured from a 1968 FPC
pipeline map, with distances measured along the path of the
biggest pipeline groups connecting the pairs of regions.
(Canadian gas mileage, however, was measured only from the
border, since the gas purchased by an interstate pipeline from
a Canadian firm is assumed to have been made at the border.)

V: Pipeline volumetric capacity. As a proxy for actual flow data
which was unavailable, the total cross-sectional pipeline area
for gas flowing into each consuming region was measured as the
capacity variable. If a state was a net exporter, the cross-
sectional area of all pipelines flowing out of the state would
be added on as well because the inflow figure alone underestimates
the quantity of gas flowing through the state. The capacity
figure is then computed by summing the squares of the relevant
pipeline diameters (the diameters of each pipeline are shown
on the FPC pipeline map).13

H: The Herfindahl Index, defined as H Ex- , where xii is the

fraction of gas consumed in region j provided by company i.
Company sales from FPC From 2 Reports was used to calculate
Xi j and these were aggregated to compute the index for each

state each year. Since there is little variation in the
market shares over time, the mean value over time is taken for
each state.

13This sum of squared diameters measure is a valid proxy for capacity only under
several assumptions. First, the pressures in each pipeline are assumed to be
nearly equal; this is reasonable since pipeline pressure is usually 60 to 80
atmospheres. Secondly, it is assumed that each pipeline or pipeline group is at
capacity or at the same percentage of capacity. This is difficult to validate
empirically, but is consistent with the assumption of equal pressure if the
pipelines are operating at maximum efficiency. The third assumption is that
the pipeline structure is not changing much over time. This is well substantiated
by historical data on the fractions of demand coming from given producing
regions, which have been quite stable over time.

I



Finally, the following codes will be used to refer to specific production

..-a" 'regions and consuming states throughout this Chapter:

CODE LETTERS FOR DISTRICTS

Consumers

Alabama
Arizona
Arkansas
California
Colorado
Maryland
Delaware
District of
Columbia
Florida
Georgia
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Michigan
Minnesota
Mississippi
Missouri
Nebraska
Nevada
New England
New Jersey
New Mexico
New York
North Carolina
Ohio
Oklahoma
Oregon
Pennsylvania
South Carolina
South Dakota
Tennessee
Texas
Utah
Virginia
Washington
West Virginia
Wisconsin
Wyoming

Suppliers (for which reserves
are modeled)

CA
COUT
KA

LN
LX
LOF
MS
NN
PE

OK
T1
T2

T3

T4
T6
T9
T10
WK
WY

California
Colorado + Utah
Kansas
Louisiana North
Louisiana South (onshore)
Louisiana South (offshore)
Mississippi
New Mexico North
Permian
Oklahoma
Texas 1

2

3

4

6

9
10

West Virginia + Kentucky
Wyoming

Suppliers (for which reserves
are not modeled)

AR
CN
MI
MO
NB
NY
ND
OH
PA
T5

T7

Arkansas
Canada (exogenous)
Michigan
Montana
Nebraska
New York
North Dakota
Ohio
Pennsylvania
Texas 5

Texas 7

1. AL
2. AZ

3. AR
4. CA

5. CO

6. MD

7.

8.

9.

10.
11.
12.

13.

14.

15.
16.
17.
18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.
32.

33.
34.

35.
36.

37.

38.

39.
40.

FL
GA
ID

IL

IN

IO
KS
KY
LA
MI
MN
MS
MO
NB
NV
NE
NJ

NM
NY
NC

OH
OK
OR
PA
SC

SD

TN
TX
UT
VA
WA
WV
WI
WY
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4.3. Estimated Equations for Gas and Oil Reserves

There are nine equations that determine additions to reserves for both

natural gas and oil from onshore production districts. Single equations are

estimated to explain the total number of exploratory wells drilled (WXT), tle

average sizes of new discoveries per well of natural gas (SZG) and oil (SZO),

and to explain the fraction of wells successful in finding gas (SRG) and in

finding oil (SRO). Together they comprise the equation set for explaining

new discoveries of gas and oil. Finally, four equations are estimated that

explain extensions of gas, extensions of oil, revisions of gas, and revisions

of oil. After describing the discoveries equations in 4.3.1., we shall deal

with the extensions and revisions equations in 4.3.2.

4.3.1. New Discoveries of Natural Gas and Oil

The theoretical relationships for the exploration and discovery of lnatural

gas and oil that were derived in Section 3.2 must be modified for purposes of

estimation. Let us begin by re-examining equation (12) of Section 3,2,1. that

specifies the total number of exploratory wells drilled. Note that the equation

includes the mean and variance of RWG and RWO, the average sizes of gas dis-

coveries and oil discoveries per well drilled. From equation (23) in Section

3.2.5. we can write

2 2 2G2 ^ 2 2 (1)
(RWG) = 42 G = 4 (SZG) (SRG) 

v A2 _-_ 2 ^2 2 2(2)
(RWO)) = 4( ((RWO) = 4( (SZO) (SRO) (2)

where aG and ag are estimated variances of the error terms

associated with the equations that determine the sizes of gas and oil

discoveries respectively. The equation also contains the mean values of
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oil and gas discovery sizes, and we will use the estimated values of these

variables (obtained from the estimated forms of the size of discovery equa-

tions) in our exploratory wells estimating equation.

The equation for the number of exploratory wells drilled also includes

the expected field prices of natural gas and oil. Since it is im-

possible to observe expected prices, we use as proxy variables a three-year

moving average of past prices. Finally, dummy variables are introduced

(DD1, DD2, DD3, and DD4) to account for heterogeneity between broadly-defined

field markets in the United States. This gives us the following estimating

equation for exporatory wells drilled:

WXT = c + alDD1 + a2DD2 + a3DD3 + aDD4

+ cl[(SZG SRG)(PG_l+PG 2+PG_3)/3 + (SZOSRO)(PO_1+PO 2+P0_ 3)/3]

2 2 2 22 2 2
+ c2[(SZG) (SRG) (PG_ 1+PG_2+PG_3) /9 + (/ao)(SZO) (SRO) (PO l+PO 2+PO3) /9

+ c3ATCM + c4INTA . (3)

Note that this equation cannot be estimated until the size and success ratio

equations for both oil and gas have also been estimated, since the equation

includes the estimated values for sizes and success ratios as well as the

estimated error variances for the oil and gas sizes.

The theoretical specification for the average size of discovery ap-

pears in equation (21) of Section 3.2.3. The argument is that the average

discovery size at a point in time (t + h) depends on the average discovery

size of some previous time t. For purposes of estimation we must choose some

interval of time (which we shall call the "reference period") for which

we can make observations of changes in discovery size. We will use the two-

year interval immediately preceding the middle of the previous year's observa-

tion. The reference value of discovery size will therefore be the average

of sizes over the past three years. We thus define



SZGREF = (SZG + SZG_ 2 + SZG 3)/3 (4)

and

SZOREF = (SZO_1 + SZO_2 + SZ0_3)/3 (5)

for natural gas and oil respectively. Consistent with this, the appro-

priate variable to be used in place of WXS[t, t+h] would be an index of

the number of successful wells drilled from the reference period through

the end of the previous year. The number of successful gas wells drilled

from the middle of the reference period to date can be approximated by

(1/2)WXG_3 + WXG_2 + (1/2)WXG_1 We therefore define the following indices

(proportioned only for numerical convenience):

WXGREF = (WXG_1 + 2WXG_2 + WXG_3)/40 (6)

WXREF = (WXO_ + 2WX0_2 + WXO_3)/40 (7)

Since the theoretical specification includes expected gas and oil

prices, we will again use three-year moving averages of these prices as

explanatory variables (the three-year period also corresponding to

the time interval in the reference period); We thus obtain the following

estimating equations for the size of gas discoveries and size of oil dis-

coveries:

log(SZG) = log(SZGREF) +

WXGREF fI (DEPG_ 1, (PG_1+PG_2+PG 3)/3, (PO_+PPO 2+PO 3)/3) (8)

log(SZO) = log(SZOREF) +

WXO REF.f 2 (DEPO_l, (PG _PG 2+PG_3)/3, (PO_1+PO 2+PO_3)/3) . (9)
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The theoretical specification for the success ratio equations appears

in equation (22) of Section 3.2.4, and applying the same notion of a reference

period we obtain the following equations for the gas and oil success ratios:

3 3

log(SRG) = log(SRGREF) + WXGRE f3(PG PO (10)
REF REF · f3 1 _is 1 -i

3 3

log(SRO) = log(SROREF) + WXORE f4(PG-i PO (11

where SRGREF and SROREF are defined by

SRGREF = ((SRG_1 + SRG_2 + SRG_3)/3) SZ (12)

SREF = ((SRO_1 + SRO_2 + SRO )/3)/3) SZO (13)

SZOREF

One problem with equations (10) and (11) is that they provide no

guarantee that the estimated success ratios will take on values between

O and 1. In order to constrain the success ratios to the interval (0,1),

we will use the following logit specification for our estimating equations:

* ISRG 3 3
SRG REF WXG logl = log + X i P (14)

1- SRG 1- SRGREF WXREF 1 - ! 1-REFR 1 * 

I 'SRO 3 3
log SRO lo1 REF + WX f4 (EPG 'Po) . (15)

l-SRO o 1 - SROEF REF 1 - 1 _REF1 
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It is important to stress that equations (3), (8), (9), (14),. and (15)

must be estimated in sequential order. First, the size equations (8) and

(9) are estimated and the resulting equations are used to generate size es-

timates for the reference variables in the success ratio equations. In addi-

tion, the estimated standard errors of the size equations will be used in

the estimation of the wells equation. Equations (14) and (15) for the

success ratios are estimated next, and the results are used to generate es-

timated success ratios. Finally, the wells equation can be estimated, using

A2 2
estimated sizes, estimated success ratios, and the estimated ratio (a O/a).

These equations are estimated by pooling data from eighteen FPC produc-

tion districts over the years 1964 through 1972. No data prior to 1964

was used to ensure that the estimation period included only those years

for which regulation was effective (i.e., for which excess demand existed

in reserves markets). Equations were estimated using the generalized

least squares procedure discussed above, except that the serial

correlation coefficient was assumed to be the same in all regions.1 4

The estimated versions of the five equations that determine new dis-

coveries of natural gas and oil are shown below, with t-statistics in paren-

theses. Note that these estimation results, and the associated statistics,

refer to the last stage of our generalized least squares procedure.

Because these reserves equations. contain variables with lags up to three
years, only five years of data can actually be used in the estimation (nine
years are initially available, but three are lost because of lags and one
because of the autoregressive transformation). It was felt that region-by-
region estimates of p. based on five data points would have unacceptably large
variances.
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Exploratory Wells:

WXT = 796.16 - 20.74DD1 + 294.12DD2 - 1.49DD3 + 234.29DD4
(6.01) (-0.03) (2.61) (-0.02) (0.53)

+ 0.00367[SZGSRG(PG_P G _2+PG_3)/3 + SZO-SRO((P +PO 2+P 3)/3]
(7.074)

- (2.04xlO- 8 - 1.74x10-8 DD1) [SZG SRG ((PG +PG 2+PG 3)/3)

,U.:))

2

+ 2 SZO2 SRO 2((PO+PO2+P _3)/3) - 0.00204ATCM - 64.15INTA 1

G (-1.36) 

S.E. = 1.781 D.W. = 1.52

2
aO (S.E. of SZO regression)2/(Average value of WXG)

2
oG (S.E. of SZG regression) /(Average value of WXO)

(5.46)2 1
* = 1.01

(3.52)2 2.38

Size of Gas Discoveries (For Successful Gas Wells):

( SZG 
WX log Z )= -0.0717 + 0.02687DD1 + 0.0638DD2 + 0.03825DD3

WXGREG GREF (-1.21) (1.92) (1.53) (0.0255)

+ 0.1146DEPG_ + 0.00285 ((PG + PG_ + PG )/3)
fr, _ -1 -tI 1 -2 + 3 )

1l. OU) 1.zl1)

- 0.0241((PO_1 + P 2 + P-3)/3)
(-0.95)

(17)

S.E. = 3.519 D.W. = 1.68

15
Estimated error variances are divided by average values of the number
of successful gas and oil wells to account for the heteroscedasticity
correction used in the estimation of the size equations.

2
R = 0.81 F = 20.84

where15

(16)

2R = 0.95 F = 295.6

k-z.4V)
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where

SZGREF = size of gas discoveries in the reference period immediately pre-
ceding the current period

= (SZGi + SZG_2 + SZG_3)/3

WXGREF = index of number of successful gas wells completed in the refer-
ence period immediately preceding the current period

= (WXG + 2WXG_2 + WXG 3 )/40

Size of Oil Discoveries (For Successful Oil Wells):

1 lotsZO = -0.08228 + 0.02074DD1 + 0.00464DD2 + 0.00233DD3
REF \ REFJ (-1.10) (1.22) (0.66) (0.37)

+ 0.02820DEPO - 0.00195((PGl + PG + PG_)/3)
1 0.35) (-2.08)(0.35) (-2.08)

+ 0.02932((PO_1 + PO_2 + PO_3)/3)
(2.37)

(18)

S.E. = 5.46 D.W. = 1.68

SZOREF = size of oil discoveries in the reference period immediately pre-
ceding the current period

= (SZO_1 + SZO_2 + SZ0_3)/3

index of number of successful oil wells completed in the district
in the reference period immediately preceding the current period

Fraction of Successful Gas Wells:

SRG
lg -SRG °g(-SRG +REF WXG RE[-0.04653 - 0.02706DD1 - 0.02502DD2

log SRG REF (-0.902) (-2.60) (-1.88)

- 0.02891DD3 - 0.00312( (PG +PG 2+PG 3)/ 3)
/ * -on f ' 1 N2 3
-* 3oz) k--L . LI)

+ 0.04384((P01 + PO-2 + PO_3)/3)]
(2.14)

(19)

S.E. = 4.32 D.W. = 1.61

R = 0.84 F = 55.92

where

WXREFREF

2
R = 0.76 F = 55.59
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where

SRGREF = ((SRGi + SRG + SRG 3)/3) SG

SZGREF

Fraction of Successful Oil Wells:

SRO SROREF
log 1-SRO = log _ SRO + WXO REF[0.05521 + 0.02815DD1 + 0.02571DD2 + 0.0138DD3

REF (0.98) (1.09) (0.73) (0.69)

+ 0.00208((PGi + PG_2 + PG_3)
(0.80)

- 0.0378((P0_1 + PO_2 + PO_3)/ (20)
(-1.27)

R = 0.43 F = 2.88 S.E. = 3.7 D.W. = 1.48

where

SREF ((SRO + SR0_2 SRO 3)/3) S

SZOREF

The estimated equations follow the theory fairly closely. Although

some of the explanatory variables are not statistically significant, the

signs of all the coefficients are consistent with our expectations. For

example, in equation (16) expected return appears with a positive coefficient

while expected risk, drilling costs, and the interest rate all appear with

negative coefficients as expected. The positive coefficients of the depletion

variable in the size equations are also correct, since this index decreases

in size as depletion ensues. Finally, in both the size equations and success

ratio equations the price coefficients for gas and oil prices appear with

opposite signs, as expected if there is directionality in oil and gas

drilling.
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These equations provide us with an important empirical result, namely

that as field prices of natural gas increase, additional drilling is done

on average on the extensive margin. The size of gas discoveries per

successful well increases (from equation (17)), while the success ratio

for gas wells decreases (from equation (19)), indicating that additional

drilling has been undertaken in regions with lower probabilities of success

but higher size of finds. Changes in the price of oil also have resulted

in additional drilling directed on the whole towards the extensive margin,

generally with the size of oil discoveries increasing and the success

ratio for oil wells decreasing as oil prices increase.

The results also relate to the question of whether there has been

"directional drilling". Increases in the price of gas-seem to result in

an increase in the success ratio for oil wells, and a decrease in the size

of oil discoveries. This indicates that as gas becomes more profitable

relative to oil, producers shift to more extensive exploration for gas

and more intensive exploration for oil. This does not mean, however,

that oil discoveries go down; in fact they may increase since the total

amount of drilling activity is increasing. Finally, an increase in the

price of oil, while resulting in more oil discoveries,.will also result

in some additional gas discoveries (both because the total amount of drilling

has increased and because associated gas is found with the oil)

4.3.2. Estimated Equations for Extensions and Revisions

There is little economic explanation for extensions and revisions. We

expect extensions of both natural gas and oil to depend on lagged discoveries

and the number of exploratory wells drilled in the previous years. Equations

were estimated in linear form using these explanatory variables, as shown

below.



Natural Gas Extensions:

XG = -38213 + 1.1307x10 DD1 + 1.9595x10 DD2 + 16080.9DD3 + 0.2942DG_1 + 440.2WXT_
(-0.34) (2.72) (6.18) (0.11) (2.38) (2.17)

(21)
2 5
R = 0.44 F = 22.05 S.E. = 2.87x10 D.W. = 1.84

Oil Extensions:

XO = 4096.0 + 1.7852x105DD1 + 44092.7DD2 - 5192.7DD3 + 0.0924D_1 + 33.928WXT_
(0.79) (10.31) (3.06) (-0.81) (0.93) (2.86)

(22)
2 4
R = 0.69 F = 50.80 S.E. = 1.9x10 D.W. = 1.90

Alternative forms for these equations were estimated to determine

whether the depletion variables and prices would offer any additional ex-

planatory power. Alternative regression equations for extensions of

natural gas are shown in equation (23), which includes the depletion

variable and total reserves, and equation (24), which includes the gas price.

XG = 1.85x10 + 2.15x10 DD1 + 2.16x10 DD2 + 1.69x10 DD3
(0.72) (2.40) (5.81) (0.91)

+ 0.315PG + 463.75WXT - 2.7x10 DEPG - 0.015YG (23)
(2.64) (2.41) (-0.74) - (-1.25)

R = 0.45 F = 18.2 S.E. = 2.73x10 D.W. = 1.85

XG = 2.02x106 + 1.18x10 DD1 + 1.92x106DD2 - 6412.ODD3
(0.64) (2.94) (5.76) (-0.04)

+ 0.289DG 1 + 409.0WXT - 1.04x10 DEPG_1 - 8490.OPG (24)
(2.41) (2.06) (-0.30) (-0.87)

2 5
R = 0.46 F = 17.5 S.E. = 2.8x10 D.W. = 1.82

The reserves, the depletion variable, and the price variable are

statistically insignificant and appear with the wrong signs.
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Alternative regressions for extensions of oil reserves are shown in

equations (25) and (26).

XO = -15853.0 + 1.56xlO DD1 + 2989.6DD2 - 3593.9DD3
(-1.24) (8.58) (0.14) (-0.65)

+ 0.105DO + 30.52WXT_ + 21447.ODEPO + 0.0065YO (25)
(1.02) (2.89) (1.31) (2.44)

2 4
R = 0.76 F = 51.4 S.E. = 1.88x10 D.W. = 1.81

XO = 33743.0 + 1.85x10 DD1 + 45438.ODD2 - 2908.3DD3
(1.38) (10.78) (3.45) (-0.48)

+ 0.098DO + 26.72WXT + 8065.ODEPO - 10748.0PO 1 (26)
(0.95) (2.30) (0.49) (-1.68)

2 4
R = 0.74 F = 44.8 S.E. = 1.9x10 D.W. = 1.84

Here again the price variable appears with the wrong sign, and the de-

pletion variable is insignificant.

Revisions of natural gas and oil reserves tend to defy

economic reasoning as well. We expected that explanatory variables would

include past year-end reserves, changes in production, and the depletion

index. When we actually estimated these equations, we found that all of

the variables did offer some explanatory power in the oil equation, but

changes in productionwere not significant in the gas equation. The final

regression equations, again estimated in linear form, are shown below.

Revisions of Natural Gas Reserves:

RG =-71295 + 0.02007YG_1 + 0.3142A(QG 1) + 930610DEPG_1 (27)
(-2.42) (3.21) (0.52) (2.07)

2 5
R = 0.14 F = 7.3 S.E. = 5x10 D.W. = 1.98

Revisions of Oil Reserves:

RO =-13345 + 0.0483YO + 3.501A(QO_) + 188210DEPO (28)
(-2.38) (5.80) (2.92) (2.33)

2R =0.56 F = 28.3 S.E. = 1.02x10 5 D.W. = 1.75
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Note that the equation for revisions of natural gas reserves has a

rather poor statistical fit, with an R of 0.14 and a standard error

that is about five times the mean value of the dependent variable. We

were unable to obtain a regression equation any better than (27), and

we must simply recognize that natural gas revisions are likely to pro-

vide a large amount of noise in simulation.

4.4. Estimated Equations for Production of Gas

The structural equations for gas production depend on specification

of the marginal costs of developing existing reserves, which in turn

depend on the particular functional form that one chooses to represent

development investment. Using different development investment functions,

we arrived at alternative estimating equations for gas production that would

apply under marginal cost pricing, as in equations (35), (36), and (41) in

Section 3.3. We derived other alternative structural equations, as given

by (43), (44), and (45),that would apply for deviations from marginal cost

pricing resulting from non-competitive market structures.

In estimation we have been faced with the problems of choosing among

the equation forms, deciding whether or not to include the "competition"

variable that accounts for deviations from marginal cost pricing, and selecting

a set of regional breakdowns most appropriate for the estimations. All six

equations (i.e., the three alternative equation forms, each with and without

the competition variable) were estimated over different regional breakdowns,

Price elasticities were calculated, and the equations were simulated historically

to determine how well they tracked past data. The results indicated

that equation (36) would provide the best fit, both in estimation and

simulation, and that the competition variable should not be included, indi-

cating that;marginal cost pricing would apply.
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Before discussing regional breakdowns, let us consider the regression

results for alternative equation forms with and without the competition

variable. A representative set of alternative regressions is shown in

Table 4.1. As can be seen in that table, the competition variable is

statistically insignificant, except in equation (D); but at the same time

the reserve variable appears with an incorrect sign in this regression so

that it is unacceptable. Equation (35) from Section 3.3 is represented by

regression C, and again the reserve variable appears with the wrong sign.

Equation (41) is represented by regression A, but the estimated discount

rate in that regression is negative (it should have a value close to 0.1).

Regressions E through K are all based on equation (36), i.e., on

Q = a0 + a1 log PW + a2YG_l

They differ from each other in that different additive and multiplicative

dummy variables are used as a means of ascertaining the appropriate regional

16
breakdown. Estimations using alternative regional breakdowns gave equally

statistically significant results in most cases, and the choice of one

regional breakdown over another was based more on whether the-equations

tracked the historic data closely in all production districts.

When the equation was estimated for the entire United States, excluding

Louisiana South, the general fit was acceptable, but in simulation of historical

production the equation failed to reproduce behavior accurately in the Permian

region. The equation was estimated again using alternative dummy variable

specifications (regressions H, I, and J), but again the results failed to track

production behavior realistically in particular districts. The problem here is

that districts which are fairly homogeneous in their production behavior tend to

16A highly significant dummy variable for a region or group of regions that
accounts for a sizable part of the explained variance in an equation is
indicative that the region(s) might be included in a separate equation.
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fall in regional groups, but production behavior is quite different between

groups--so much so that the heterogeneities cannot be captured with only

a few dummy variables.

As a result, production out of reserves equations have been estimated

separately for four different regions in the country. The regional

breakdown is as follows:

1. Permian (New Mexico South, Texas 7C, 8, 8A)

2. Gulf Coast and Mid-Continent (Kansas, Louisiana South onshore,

Oklahoma, Texas 1, 2, 3, 4, 10)

3. Other Continental (Colorado plus Utah, Louisiana North, Missouri,

Mississippi, New Mexico North, Pennsylvania, Texas 6, Texas 9,

West Virginia plus Kentucky, Wyoming)

4. Louisiana South offshore

Regression results for the three continental production regions are shown

below (the production equation for offshore Louisiana is discussed in the

next section, where we examine the empirical results for the entire offshore

"submodel"). The equations for Gulf Coast - Mid-Continent and Other Continen-

tal were estimated using the generalized least squares procedure, and the

estimated regional serial correlation coefficients and error term standard devia-

tions are shown. Prices have been roughly the same in the four districts

comprising the Permian Region, so that these districts were aggregated

and a simple time series regression was run for the Permian Region. The

equation was estimated, however, using a second-order serial correlation

correction, and the two estimated serial correlation coefficients are

17
shown.

1 7The second-order correction assumes that the error terms are of the form

Jt = P1Jt-l + P2£J,t-2 + Jt
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Permian:

QG = -6447700.
(-2.35)

+ 1856700.

(1.67)

log (PW) + 0.1226 YG
(5.24)

S.E. = 1.42x10 5 D.W.(0) = 1.98

LHS MEAN = 1.73x106

P= 0.990
P2 = -0.822

Gulf Coast and Mid-Continent:

QG = -16942 0. + 5881360. LX
(-0.352) (6.95)

+ 340752. log (PW) + 0.02638YG
(2.00) (6.78)

2
R = 0.906 F = 193.7 S.E. = 0.727 D.W.(7) = 0.90

LHS MEAN = 2.655

(.
_1

111834.

237533.

149732.

93124.

89984.

117108.

81681.

88510.

Remaining Continental Production:

QG = -9424.0 + 23034 log (PW) + 0.05999YG
(-0.22) (1.65) (29.23)

2R = 0.968 F = 1174.2 S.E. = 0.785 D.W.(9) = 1.00

LHS MEAN = 5.21

2
R 0.925 F = 67.7

(29)

(30)

p.
_J

KA 0.6402

LX 0.9270

OK 0.8175

T1 0.9319

T2 0.9900

T3 0.8359

T4 0.6161

TO 0.7126

(31)

.
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p _1
COUT 0.3932 43182.4

LN 0.7749 52688.1

MO 0.9900 13369.8

MS 0.5279 14590.5

NN 0.6943 31432.6

PA 0.6970 26713.4

T6 0.2684 23185.6

T9 -0.0365 24564.4

WK 0.35-80 18731.3

WY 0.7456 25310.

These equations are all quite significant. Although they seem in general

to provide no better statistical fit than the alternative forms E through

K in Table 4.1, they do perform considerably better in a simulation context,

and are able to reproduce production behavior in virtually every production

18
district in the country.

Note that the average field price PW is based on a "roll-in" of changing
contract prices, and thus is explained by last year's average wellhead price,
the new contract price (PG), and production (QG). The average wellhead price
is defined as follows:

Average wellhead price = (new contract price x new production
+ average wellhead price on old contracts x production on old
contracts)/total production

New Production = (this year's production - last year's production)
+ last year's production x depletion rate

If one assumes that the average wellhead price on old contracts equals last
year's average wellhead price, then one obtains an estimate of the depletion
rate (d) from the following equation (estimated over 18 FPC production
districts from 1967 to 1971):

PWt = [PGt * (QGt - (1 - .1557)QGtl ) + PWt1 . QG . (1 - .1557)]/QGt t (7.07) (7.07)

R = .967 S.E. = 0.707 F = 2667

This equation is the basis for calculating rolled-in prices in all onshore
regions.
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4.5. Estimated Equations for Offshore Reserves and Production

All of the equations in the offshore model are estimated using pure

time-series data, since there is only one district involved. Because a

longer time series is available for each variable (the 15 years 1958 through

1972) than is the case onshore, and because significant autocorrelation is

expected in the estimated residuals, a second-order serial correlation correc-

tion is used as opposed to the first-order correction used in other parts of

the natural gas model. The error term is assumed to be of the form:

Et = P t-l + P2 t-2 + t

where t is the uncorrelated term.

In equations where right hand side variables are predetermined, a simple

search procedure can be used to choose P1 and P2 to minimize the sum of

squared residuals of the regression.1 9 In equations where unlagged endo-

genous variables appear on the right-hand side, a two-stage least squares

procedure must be combined with the second-order serial correlation correc-

tion. This is done using a procedure suggested by Fair, and it accounts for

simultaneous equation bias as well as serial correlation bias.

The available data for wildcat wells (WWT) aggregates those drilled for

oil and for gas, so that the number of wells drilled should be responsive

to changes in both the price of oil and the price of gas. It was not possible,

however, to estimate a wells equation with both oil and gas prices as independent

variables because these prices are highly collinear. Thus two gas-oil

price indices are constructed, one each for the wells and discoveries equations,

1 9This is a modification of the Hildreth-Lu procedure.

20
See R.C. Fair, [27].
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and these are used in place of the two prices that would otherwise appear.

The price index for the wells equation is constructed by first estimating

that equation including the price of gas and excluding the price of oil.

Next, the equation is re-estimated including the price of oil but excluding

the price of gas. The coefficients of the oil and gas price terms are then

used as weights in the price index. The price index for the discoveries

equation is similarly calculated.21

The estimation results for the wells equation are shown below (with

t-statistics in parentheses). The first two regressions are used only to

generate the coefficients for the price index. The third regression, equa-

tion(34),is used to explain well drilling in the offshore model. The

estimated values of the two serial correlation coefficients p1 and p2 are

also shown.

WWTt = -2550.6 + 164.5 LOG(ACTt + ACTt_ )/2 + 1210.0 PG t_ (32)
(-9.1) (8.7) (5.0)

WWTt = -2522.2 + 156.7 LOG(ACT + ACT )/2 + 106.4 PWO (33)
(-9.0) (9.5) (2.3)

WWTt = -4333.4 + 162.8 LOG(ACTt + ACTt_1)/2
(-6.9) (9.9)

+323.0 LOG(1210.0 PG + 106.4 PWOt 1) (34)

(3.5) t-

R = .944 S.E. = 23.0 F(2/12) = 101.0

P = 0.737 P2 = -0.996 LHS Mean - 134.6

All of the coefficients of 'equation (34)are statistically significant and

have the expected signs.

21
For a more detailed discussion of the statistical problems involved in es-
timating these equations, as well as the other equations of the offshore model,
see P.N. Sussman [83].
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The estimation results for new discoveries per well are shown below,

and again the first two regressions are used to create the price index

for the final equation. Note that in this equation price variables include

the new contract price of gas and the ratio of the gas price to the oil

price. The price index thus applies to these two variables, and will differ

from the price index used in the wells equation.

DG/WWTt = 5694.0 - 2161.3 LOG(CWWT ) + 68967 PG
(1.3) (-3.5) (3.4)

DGt/WWTt = -1822 - 2028.8 LOG(CWWT t 1) + 3.2x10 PG /PWOt
(-0.33) (-3.6) (3.8)

DGt/WWTt = 2.0x105 - 2092.1 LOG(CWWTt_ )
t (-3.6) (-3.8) t

+ 20895.7 LOG(68967 PG + 3.2xlO5 PGt/PWOt)
(3.8)

R = .813 S.E. =3.63x10 F(2/11) = 23.9 D.W.

P1 = -0.029 P2 =-1.00 LHS Mean = 7.63x103
1 ~~2=-10

(35)

(36)

(37)

= 2.66

All of the coefficients in equation (37), the final regression, are

statistically significant. The positive coefficient on the price index in

this equation describes the extensive mode in which drillers operate. The

coefficients of the components of the price index indicate that an increase

in the price of oil relative to the price of gas leads to more wildcats

drilled for oil and less gas discoveries per wildcat drilled.22

Extensions and revisions of gas reserves are explained by a simple line

relationship, with the explanatory variables the number of field wells

drilled (FWT) and the number of producing acres (ACP) in the previous year:

XRG = -1.66x10 + 4515.9 FWT + 0.405 ACPt (38)
(-5.1) (7.5) (2.5)

R2 = 942 S.E. = 5.0x10 F(2/12) = 96.7 D.W. = 2.19

P1 = -0.625 2 = -0.557 LHS Mean 1.80x0

For a discussion of oil and gas directionality see Khazzoom, J.D. [43

For a discussion of oil and gas directionality see Khazzoom, J.D. [43].

ar

2
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The equation describing field wells is a linear relationship between

that variable and the number of offshore drilling rigs DRO and the long-term

interest rate INT:

FWTt = 113.6 + 8.3 DROt - 21.0 INT (39)
(1.2) (7.0) (-1.5)

RSQ = .821 SER = 72.2 F(2/12) = 31.8 D.W. = 1.87

P = 0.073 P2 = -0.140 LHS Mean = 623.0

Here, field wells 'include all offshore wells except wildcat wells,

i.e., they include development wells and exploratory extension wells.

The coefficient on the drilling rig term (8.3) is consistent with empirical

estimates of the average number of rig-days it takes to drill an offshore

well (35-40).23

Production of gas out of reserves (QG) is explained by the average well-

head price of gas (PWG) and total reserves (YT).24 The functional form is

the same as that for onshore, except that the reserve term contains a three-

year lag (as explained in Section 3.4, we could expect this longer lag off-

shore).

Q 6 6 (40)
QGt 3.4x106 + 2.3x106 LOG(PWG t) + 0.116 YTt 3

(4.5) (5.1) (32.2)

R2 = .992 S.E. = 9.0x10 F(2/11) = 727.9 D.W. = 2.34

LHS Mean 1.36x106

See Adelman, M.A. and Baughman, M. [1].

24The roll-in mechanism that determines the average wellhead price PWG is
based on a different depreciation rate offshore than onshore. Because
offshore development has been more recent, only a small percentage of con-
tracts have expired in the past. Our estimated roll-in equation (based on
data over 1956-1973) is:

PWGt = [PTt . (QGt - (1 - .0207)QGtl ) + PWGt QG (1 - .0207)]/QG t
(0.70) (0.70)

R2 = .945 S.E. = .0094 F = 292.3

The estimated depreciation rate is incremented by .005 each year after 1973
for forecast purposes to account for future expiration of old contracts.



The estimated equation fits the data well, and has a standard error that is

less than 8 percent of the mean value of the dependent variable.

Next, forfeited acreage (ACRD) is explained by the amount of acreage

leased (ACR) five years previously and an average of the acreage under super-

vision (ACT) five and six years previously:

ACRDt = -1.26x10 + 0.5 ACR + .1 ((ACT + ACT )/2) (41)
(-2.3) (4.7) (4.7) t-5 t-6

R = .853 S.E. = 1.3x105 F(2/10) = 29.1 D.W. = 1.90

^ 5
P1 = -0.985 P2 -0.111 LHS Mean - 2.24x10

Finally, new producing acreage (ACPN) is explained by the amount of

non-producing acreage (ACN) one and two years previously, the amount of

new discoveries (DG) in the previous year, and the cumulative number of

acres leased (CACR) since 1954:

ACPNt = 27923 + 0.02ACNt-2 + .28DG (ACN t_/CACRt) (42)
(1.8) (1.9) (4.4)

R2 = .92 S.E. 3.2x104 F(2/10) = 56.6 D.W. = -1.83

^h~~ 5
Pl = -0.006 P2 -0.850 LHS Mean = 1.22x10

As indicated in equation (42), an increase in non-producing acreage under

supervision in the previous two years and in new discoveries in the pre-

vious year result in additions to producing acreage. This relation-

ship is subject to a geological constraint which is represented by the cumula-

tive acres variable. As more and more acreage is leased, discoveries are

found increasingly on lands that are already productive and decreasingly on

previously non-productive lands.

Total acreage (ACT), which is an explanatory variable in the wells

equation, and producing acreage (ACP), which is an explanatory variable in the

extensions and revisions equation, are now determined through identities.

The annual increase in total acreage is simply equal to acreage leased (an
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exogenous policy variable) minus forfeited acreage. The-annual increase in

producing acreage is equal to new producing acreage minus forfeited producing

acreage (which in turn is 20% of all forfeited acreage).

4.6. sLltaed LlUatiuis to ipelifPt Re 44rtkl

Economic and regulatory conditions lead us to expect the pipeline price

markup to wholesale buyers to depend on mileage, volumetric capacity of the

25
pipeline, an interest rate, average annual sales, and the Herfindahl index.

Generalized least squares regressions for this structural relationship have

been run on a sample over the time span 1963 to 1971 with 40 cross-sections,

comprising a total of 360 observations. The dependent variable in all cases

is the level of the price markup in cents per Mcf. Independent variables

are mileage, capacity, sales, the Herfindahl Index, and the interest rate.

Dummy variables on some states were necessary to explain gross variations in

the markups of similar states that resulted from heterogeneities between states.

Regression results for the equation used in the model are shown

below, with t-statistics in parentheses, together with the estimated

serial correlation coefficients (pj) and the estimated error standard

deviations (oj) used in the GLS procedure:

-4
MARKUP = 9.528 + 0.00773M - 3.306x10 V + 1.109INTA + 8.363NV + 7.394UT

(14.43) (17.15) (-14.93) (10.9) (13.0) (4.61)

- 9.64CA + 7.3840H - 6.365WY + 4.013WV - 5.475C0 - 3.153IL
(-9.28) (5.80) (-8.34) (4.79) (-7.05) (-7.27)

+ 5.476WI - 3.932FL (4:;)
(6.04) (-3.12)

R = 0.960 F = 571.9 S.E. = 0.516 D.W.(0) = 1 97

t5Many of the series for these variables were not directly available, and

had to be constructed from primary data (e.g,, FPC forms) or computed from
other data series. Sources and methods of computation of data are shown in
Section 4.2. above.
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Region

AL 0.529 3.977
AZ 0.582 2.984
AR 0.595 2.529
CA 0.437 3.162
CO 0.199 3.174
MD 0.433 4.509
FL 0.347 4.404
GA 0.570 5.125
ID 0.551 3.107
IL -0.029 2.092
IN 0.836 2.084
IO 0.650 1.605
KS -0.280 1.767
KY 0.556 2.768
LA 0.554 2.682
MI 0.403 1.182
MN 0.376 2.515
MS 0.554 2.138
MO -0.317 2.317
NB -0.547 3.814
NV 0.263 2.439
NE 0.873 5.207
NJ 0.623 2.705
NM 0.202 2.870
NY 0.498 3.128
NC 0.659 1.781
OH 0.332 4.520
OK 0.406 1.641
OR 0.979 2.785
PA 0.593 4.095
SC 0.751 4.030
SD -0.137 3.213
TN 0.495 3.739
TX 0.671 1.854
UT 0.217 6.744
VA 0.454 4.076
WA 0.949 2.275
WV -0.428 6.413
WI 0.586 2.003
WY 0.274 2.661

A number of alternative estimations were also performed, and they

are shown in Table 4.3, As can be seen from that table (as well as in

the final regression) the strongest variable is the mileage series,

which in nearly every regression has a coefficient close to .01 and a

t-statistic of about 20. Assuming effective regulation, so that markups

reflect only costs, this indicates an average total cost of roughly

one cent per Mcf per hundred miles. The capacity, sales, and interest
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variables are also strong in general, with t-statistics in the range of

4 to 10. The Herfindahl Index is the weakest variable in the model, and

is usually statistically insignificant or appears with the wrong sign.

A I)relti:nary hli.torlcal hniitltatloii of the cHt'imat. t'(tljlt Ioll

without dummy variables showed that in several states the markup was

severely under-or over-estimated. This variance was not correlated with

geography. In the Carolinas, for example, wholesale prices seemed to be

about 5 lower than in the neighboring states, while in Ohio they were

about 5¢ higher. These variations could be the result of different tax

structures in the two states of which we are not aware, or- of degrees of

competition not correlated with the Herfindahl Index, In any case, dummy

variables are used for those states which show large initial simulation errors.

Also, the final equation chosen for the model did not contain a sales

term, because the "sales" variable includes interstate sales only. Since

there is no way to separate interstate and intrastate sales in the demand

equations of the model, a markup equation that included interstate sales

only could not be simulated directly, so that this term had to be excluded.

All of the explanatory variables and dummy variables in the final regression

are statistically significant, and the equation simulates the historic data

quite closely.
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4.7. Estimated Equations for Wholesale Demand for Natural Gas

The structural equations for wholesale demands for gas, whether

residential or industrial, explain the level of "new" demand, 6Q, defined as

Qt AQt + rQt-l (44)

with r as a depreciation rate for gas--burning appliances. The gas wholesale

demand equations, then, are of the form:

6Q = f(PGW, POIL, YY, 6YY, NN, ...) (45)

so that the level of new demand is related to the wholesale gas price,

the price of competing fuels (such as oil), and "growth" variables such

as income, population, etc.

Before this equation can be estimated, a value must be determined for

the depreciation rate r.26 An equation of the form;

Qt = a0 + alPGWt + a2POILt + a3YYt-1 + a4Qt-1 (46)

is estimated so as to provide the value of r equal to (l - a4 ). After a series

2 6 Balestra [83 distinguishes between two depreciations rates, one for gas
appliances and the other for alternative fuel-burning appliances, since
lifetime for appliances using alternative fuels differ. He estimates these
two depreciation rates with an equation of the form:

Qt = a0 + alPGWt + a2ANNt + a3NNtl + a4AYYt + a5YYt-1 + a6Qt-

so that depreciation rate for gas appliances is given by (1 - a6). (His
results, however, gave an estimated value of a6 that was always greater
than one, which cannot be justified theoretically.) The alternative fuels
depreciation rate can be obtained from this equation as either the ratio
a3/a2 or a/a 4. Thus, the equation is overidentified, so that the deprec-
iation rate can be obtained only by estimating it subject to the constraint
of a3/a2 = a5/a4. (The resulting estimation problem is nonlinear, but
Balestra uses an iterative method suggested by Houthakker and Taylor [36]
to obtain an estimated depreciation rate equal to 0.11, a number which
seems somewhat high.) Our initial attempts to follow Belestra's approach
failed to provide meaningful estimates of two separate depreciation rates.
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of trials, we obtained a value of the depreciation rate equal to 0.07.

This value is used here for both industrial and for residential/commercial

demand in all parts of the country.

An earlier version of this econometric model divided natural gas

demand into three major categories, sales for resale, mainline sales, and

intrastate sales, and then further subdivided sales for resale into residen-

tia lcommercial demand and industrial demand. (The distinction between

residential/commercial demand and industrial demand was not necessary for

the other two major demand categories since mainline sales

and intrastate sales are largely industrial.) After improving

and extending our data base on wholesale consumption and prices, an attempt

was made to estimate a new set of demand equations using this same break-

down. Representative estimation results for different regions of the

country are shown in Table 4. 4.

As can be seen, some of the regressions for sales for resale demand

show credible results, but the mainline and intrastate demand equations

are extremely poor, often producing negative R2 s.28 Given these results,

an alternative breakdown was made, based on the presumption that sales

for resale industrial demand, mainline demand, and intrastate demand have

roughly the same economic determinants, and that dividing industrial demand

S2 7 ee P.W. MacAvoy and R.S. Pindyck, "Alternative Regulatory Policies for
Dealing with the Natural Gas Shortage", Bell Journal of Economics and
Management Science, Autumn, 1973. The equations described in this article
were estimated by two-stage least squares, however, and therefore are not
directly comparable with the regression results presented in this section,
where a generalized least squares procedure was used.

28 2It is possible to obtain a value of R less than zero using our generalized
least squares estimation procedure. See Section 4.1 for a detailed descrip-
tion of that procedure.
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up into these three categories was simply adding noise to the data through

the process of disaggregation. 9 Industrial demand was aggregated from these

three groups, so that further estimation was done on only industrial and resi-

dential/commercial sectors.

The two demand equations (one for residential/commercial demand, and

the second for industrial demand) are estimated for each of the five wholesale

regions of the country. The regression period was first chosen to be 1963

to 1971 for both the industrial and residential/commercial sectors, as this

covered the period for which our data were most complete. In those regressions,

price terms are unlagged in industrial equations under the assumption that

industrial consumers can rapidly convert new demand to alternative energy

sources, while price variables in the residential/commercial demand equations

contain a one-year lag. Dummy variables are used selectively; in the North

Central region, for example, dummy variables are used for states such as

Illinois, Iowa and Wisconsin since these states use natural gas to generate

electricity which is transported to neighboring states for final consumption.

The results for-these regressions are shown in Table 4.5.

Simulations of the regression equations in Table 4.5 indicated

that industrial demand was being under-predicted in the years 1971 and

1972. The reason for this appeared to be that the equations were es-

timated using observations over the time in which there were curtail-

ments of service to industry (after 1970) so that the industrial de-

mand equations were re-estimated using only data from 1963 to 1969. The

residential /commercial demand equations were also re-estimated, again over

the period 1963 to 1971, but using alternative growth variables in an

attempt to improve their simulation performance. All of these equations

2 9 The division of sales for resale demand into industrial and residential/
commercial sales was based on a ratio derived from Bureau of Mines consump-
tion data.
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were estimated using the generalized least squares procedure described in

Section 4.1, except that a single value for the serial correlation coef-

ficient p was used for all districts, since there was almost no variation

in this parameter from state to state. The final wholesale demand equations

used in the model are shown below, with t-statistics in parentheses, and

estimated values for the serial correlation coefficient and error term

standard deviations for each state.

Residential and Commercial Demand for Gas:

Northeast:

6TRCS = 13485
(0.89)

- 719.67PGW + 1343.1PFOIL 1 + 42.856NN (47)
(-3.54) (1.36) (8.77)

R2
= 0.610

p 0.2536

F = 31.8 S.E. = 0.762 LHS Mean = 1.86

a.

MD

NE

NJ

NY

2929..8"

8934.3

6212. 1

18111.2

OH

PA

VA,

WV .\

33490.3

31997.6

3307.9-

10328.3

North Central:

STRCS = 27968 - 1702.4PGW + 90442PALT + 60.306NN + 38998IL

(1.94) (-3.25) (3.27) 1 (6.57) (3.48)

+ 8832.010 + 10505WI (48)
(2.69) (2.55)

R = 0.409

p = 0.0122

F = 7.507 S.E. = 0.690 LHS Mean = 1.4'9



i 4

a.4
IL

IN

IO

MI

MN

38464.0

5551.4 -

12318.4

28207.2

17284.5

MO

NB

SD

WI

15947.9

8645 

6695 D.0

8913D

Southeast:

6TRCS = 11642 - 790.4PGW + 1918.6PFOIL + 1.2406YY - 5469.7FL
(0.74) (-1.81) (1.80) (1.03) (-2.06)

+ 7272.6GA + 7961.8KY - 4077.9SC (49)
(3.21) (2.74) (-2.51)

R2 = 0.394

p = -0.1116

F 4.46 S.E. = 0.649 LHS Mean 1.10

0.

AL

FL

GA

KY

8695.8,

75282

7655.8

9737.8,

NC

SC

TN

6855.3

3967.1

8880.5

South Central:

6TRCS = 42648 - 2355.OPGW + 2912.OPFOIL 1
(1.23) (-3.48) (1.04)

R2 = 0.158

p = -0.1662

F = 4.23 S.E. = 0.819 LHS Mean = 0.713

a.
-A)

AR

KS

LA

12435.0

15894.0

23897.1

MS

OK

-TX

5942.9!

58741.0

39922.6

(50)
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West:

6TRCS = 5804.0 - 313.8PGW + 593.4PFOIL_ 1 + 21.306NN
(1.47) (-6.51) (2.13) (7.97)

+ 45642 CA + 3077.ONV
(6.17) (4.36)

R2 = 0.565 F = 19.22 S.E. = 0.709 LHS Mean 2.03

p = -0.7374

aT.

AZ 10367.9

CA 42064.9

CO 13393.7

ID 1460.7

NV 2017.6

Industrial Demand for Gas:

NM

OR

UT

WA

WY

13050.3

2664.9

3188.8

5378.1

6574.7

Northeast:

6TINS = 25092 - 589.2PGW + 25519PALT + 6.534CAP 1

(3.32) (-3.20) (1.37) (1.85)

+ 35061 OH + 23378 PA
(6.16) (3.16)

2
R = 0.570 F = 11.1 S.E. = 0.467 LHS Mean = 1.068

p = -0.0337

CT.
_z

MD

NE

NJ

5475.8

9246.5

17745.9

WV 8328.1

(51)

(52)

OH

PA

VA

22493.6

35184.0

13234.4

NY 31235.3
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North Central:

6TINS = 11099 - 937.OPGW + 64174 PALT + 2.818VAM
(0.629) (-1.42) (1.23) (6.85)

+ 11243 IL ~ 5938.OIN + 1183.0IO +
(0.77) (-1.10) (3.14)

86840MN + 9456.OWI
(1.69) (1.99)

2R = 0.760 F = 17.8 S.E. = 0.461 LHS Mean = 1.01

p = 0.1335

--%

IL.

IN

IO

MI

MN

Southeast:

6TINS = 65234 - 2145.0OPGW + 97293 PALT + 14.37CAP
(4.53) (-4.70) (5.45) (2.51) -1

- 16681NC

(-9.28)
- 17735SC

(-5.96)

2
R = 0.897

P = -0.0923

A.

_1

AR

KS

F = 62.5

31824.3

20615.0

S.E. = 0.460

MS

OK

LHS Mean = 1.88

37416. 0

86610.7

LA 103832.0

I d:

(53)

60259.8

12732.6

14344.4

28859.2

MO

NB

SD

WI

29891.1

13584.6

2622,1

6527.3

22337.1

(54)

TX 218593. 
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South Central:

6TINS = 73360

(1.52)

R = 0.649

p = -0.3645

- 5642.OPGW + 191595 POIL + 158.7CAP + 56895 LA
(-2.85) (2.16) (5.51) (3.08)

F = 14.3

()
I<

AR

KS

LA

31824.3

20615').0

103832.0

S.E. = 0.507

MS

OK

TX

(55)

LHS Mean = 1.46

37416.7

86610.0

218593.0

6TINS = 9361.0 - 465.4PGW + 51805PCOAL + 16.99CAP + 108575 CA
(4.00) (-4.22) (3.76) (3.21) 1 (8.08)2 ~ ~ ~ ~ 37) 32)(.8

R = 0.513

p = -0.7624

F = 14.5 S.E. = 0.459

(5( )

LHS Mean 1.03

a.I.
27791.8

110948.0

22064.2

3096.6

5956.9

NM

OR

UT

WA

WY

19329. 0

9381. 8-

16370. 0

32284. 0

16162.4

West:

AZ

CA

CO

ID

NV
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There is still another demand category which must be accounted for,

and that is lease and plant fuel demand. This consists of demand for gas

as an energy source for extracting and pressurizing gas at the field site.

Since there is usually no alternative energy source as easily accessible

at the site as the gas itself, the demand for plant gas is largely a

function of the total quantity of gas produced. We estimated this demand

equation by pooling data over the years 1968 to 1972 for all gas

producing states, and using a dummy variable for the state of Texas to

account for the fact that that state has a larger fraction of older fields,

which probably require more extraction fuel in their operations. The

resulting equation is shown below.

Demand for Gas as Field Extraction Fuel:

FS = 1525.0 + 0.0434QG + 0.04993TX.QG (57)
(1.99) (15.14) (8.18)

2
R = 0.847 F 3 135.9 S.E. = 0.538 LHS Mean = 1.40

p = 0.8390

a

AR 3869.2 OH 1594.7

CA 17666.4 OK 16484.2

CO 857.4 PA 543.4

KS 5787.2 TX 30703.1

LA 27128.5 UT 1909.4

MS 4085.7 WY 1932.7

NM 3267.4
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4.8. Estimated Equations for Wholesale Oil Demand

Oil demand is modeled in the residential/commercial and industrial

sectors where it can be used as a substitute for natural gas. Within the

residential/commercial market, No. 2 distillate home heating oil is the

major competitor with natural gas, while in the industrial market, No. 6

residual fuel oil is the major oil product in use. In formulating and

estimating the oil demand equations, care was taken to make them compatible

with the equations for gas demand, so that structural equations tested were

of the form:

6QOt = f(POt-l, PGt-1,' YY, NN,,..) (58)

with 6QOt = AQOt + rQOt_1 (59)

Here, new demand for oil is modeled as a function of own price, PO, in the

previous period, the price of natural gas, PG, or some other substitute,

lagged one period, and the other explanatory variable (income, etc.) which explain

growth in market size. The parameter r is the depreciation rate discussed

in the last section.

The lags on prices are assigned a priori significance under the assump-

tion that changes in the wholesale prices of oil and gas do not immediately

affect the quantity of oil and gas demanded. The growth term can he

-one of several variables depending on the market being modeled, although

income has been found to be the best general variable for market size.

Other variables for growth are also used, such as value added in manufact-

uring, VAM, for industrial equations.
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Equations of the form shown in (58) were tested over the time period

1964 to 1970 using data for forty states or groups of states in the Conti-

30
nental U.S. The aggregation is the same as that used for natural gas

demand, except that the South East, South Central and West regions are

combined to form one "South" region (because only a small proportion of

total fuel oil consumption occurs in these three regions). The consuming

region breakdowns are shown in Table 4.6. (For a complete list of variable

definitions, as well as data sources, see Section 4,2,)

Table 4.6

Regional Breakdown for Oil Demand Equations

1. North East

2. North Central

3. "South"

Maryland + Delaware, New England, New Jersey, New York,
Ohio, Pennsylvania, West Virginia, Virginia

Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri,
Nebraska, South Dakota, Wisconsin

Kentucky, Alabama, Florida, Georgia, North Carolina,
South Carolina, Tennessee, Arkansas, Kansas, Louisiana
Mississippi, Oklahoma, Texas, Arizona, California,
Colorado, Idaho, Nevada, New Mexico, Oregon, Utah,
Washington, Wyoming

Before the actual demand equations can be estimated it is necessary to

select a value for the depreciation rate parameter r as in the. case of wholesale gas

demand, In this instanee the paramete r was estimated from QOt = (l-r)QOt_1 + AOt

30 For example, the six New England states are combined into one district..

-'-- -·- -I ----

II
I

I II
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where QOt is quantity of oil consumed in period t, and AOt is the total

stock of oil-burning equipment in place in period t. Pooling all 40

consumption districts together, the regression resulted in r = 0.1039

(with t = 2.96 and R = .996), so that a value of 0.1 for r is used in

all equations.

Final equations for residential/commercial demand in each of the

three regions are shown below, with t-statistics in parentheses. The

estimated serial correlation coefficients (p.) and error term standard

deviations (oj) that were used in the generalized least squares estimations

are also snown.

Northeast

6QO.2 = -5829.8 + 237.2PGW_ - 364.3PFOIL + 0.53726YY
(-0.6843) (1.90) (-1.13) - (8.64)

-375,3TDUM(1970) + 3969.9NEW + 2497.1NJ
(-0.83) (2.06) (8.52)

2
R = 0.88 F - 48.4 S.E. - 0.52 LHS Mean m 1.91

State J

MD 0.1798 1666.7
NE -0.7295 5660.2
NJ -0.3180 1352.6
NY 0.0780 5784.1
OH -0.2131 1445.3
PA -0.5425 2549.4
VA -0.0968 1689.8
WV -0.5049 1394.6

North Central

6QO.2 = -1695.0 + 92.52PGW_ - 148.2PFOIL 1 + 0.4706SYY (61)
(-2.00) (4.58) (-1.78) (10.06)

2
R =0.34 F = 8.6 S.E. = 0.67 LHS Mean = 1.17



. A

C.J
1960.3
891.85
1073.6
872.01 -

1068.8
1055.7
363.87
190.26
1116.2

South East and South Central and West ("South")

6Q0.2 = -152.8 + 15.18PGW - 11.27PFOIL_ - 221.1AZ
(-0.89) (5.11) (-0.60) (-4.09)

F = 5.8 S.E. = 0.71

State

AL
AZ
AR
CA
CO
FL
GA
ID

KS
KY
LA
MS
NV
NM
NC
OK
OR
SC

TN
TX
UT
WA
WY

+ 356.6SC - 177.3NM
(1.22) (-2.97)

LHS Mean = 0.60

p

0.9035
-0.6197
0.4483
0. 1560
-0.1423
-0.2998
-0.1404
-0.0545
0.5330
-0.3036
0.5554
-0.1640
0.5811
0.1834
-0.3828
-0.5570
-0.2679
0.1529
0.4002
0.2946
0.6261
-0.6583
-0.5867

c.
_J

113.87
256.29
131.03
301.58
105.88
1032.9
294.63
1796.4
192.27
232.93
223.65
300.73
172.09
158.02
1295.9
226.74
296.74
850.80
292.13
604.85
177.38
885.87
196.10

-179-

State

IL
IN

IO
MI
MN
MO
NB
SD

WI

-0.1743
0.2477
0. 1627

0.1388
0.1566
0.0234
-0.3143
-0.1472
-0.0706

2
R = 0.18

(62)
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The wholesale gas and oil prices appear with the correct

signs in all three equations, although the oil price is not significant

in the South, equation. The South equation itself is barely significant

(with an F-statistic of 5.8) and this is a reflection of the very small

amount of oil that is consumed in that region. The growth variable

that has the strongest explanatory power and that was used in the

final equations is personal income. Note that this variable appears in its

"incremental" form, i.e., YY = AYY + rYYt 1, since it is assumed that the

level of total demand depends on total income, so that "new" demand will

depend on "new" income. This variable did not, however, appear significantly

in the South equation, nor did any other growth variable, so that the

only explanatory variable (other than state dummy variables) that appears

in that equation is the wholesale price of natural gas.

A time dummy (TDUM) is used in the Northeast equation, and this is

intended to account for changes in demand resulting from the stricter air

pollution standards that went into effect around 1970 in Northeastern

states. District (state) dummy variables are used in the Nor-theast and South

equations to account at least in part for heterogeneities between some states.

Alternative regressions are given in Table 4.7 to indicate the

results of using different state dummy variables (dummy variables included

are shown together with the signs of the estimated coefficients). Often

dummy variables are significant, but they eliminate any price and in-

-come effects. The objective was to find a combination of dummy variables

that would improve the significance of the overall equation without cancelling out

the significance of the price or income variables. Since this was not

achieved with the equations in the table, they were abandoned in favor of

those shown in the text above.
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Final equations for industrial oil demand in each region are shown below,

again with estimated serial correlation coefficients and error term standard

deviations:

Northeast

SRSID = -23405 + 781.8PGW - 10498POIL + 0.40026YY (63)
(-2.70) (4.45) (-3.03) (1.47)

S.E. = 0.90

0.3489
-0.0605
0.2105
-0.2765
0.1000
-0.0292
0.9116
-0.3579

LHS Mean = 1.11

a.

6195.6
8390.3
10875.
9740.5
2921.5
7121.0
5065.8
1092.9

North Central

6RSID - -634.9 - 502.2POIL + 0.65886YY + 142.110 + 512.3NB + 891.8SD + 336.5IN (64)
(-2.06) (-1.48) (6.97) (1.22) (2.66) (4.71) (0.72)

S.E. = 0.65 LHS Mean = 0.46

p
Lj

-0.2055
-0.0684
-0.5886
0.5936
-0.1494
-0.6152
-0.0772
0.4343
-0.4569

2245.9
1837.5
144.46

2777.4
998.83
918.44
446.27
110.6
644.11

2
R = 0.45 F = 12.0

State

MD
NE
NJ
NY
OH
PA
VA
WV

2
R = 0.51 F = 8.1

State

IL
IN

IO

MI
MN
MO
NB
SD
WI
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Southeast and South Central and West ("South")

6RSID = -168.5 + 11.49PGW - 413.2POIL_1 + 0.67226VAM + 8477.OFL (65)
(-1.21) (2.78) (-3.58) (6.82) (1.41)

+ 4932.0CA + 321.0OWY + 1352.0LA
(2.96) (2.18) (3.25)

S.E. = 0.57 LHS Mean = 0.47

A

-0.4294
-0.1511
-0.9777
-0.4262
-0.4637
0.6158
-0.3867
-0.0363
-0.0426
-0.0394
-0.5730
0.5521
0.3432

-0.1082
-0.1398
-0.5053
-0.4451
0.1818
-0.5145
-0.1831
-0.8124
-0.7868
-0.5411

I

1540.6
389.62
786.57

10044.
796.83

9995.2
1699.0
304.50
522.49
373.53
2803.3
521.35
156.2
940.64
1131.9
718.60
1200.8
1848.0
850.35
2897.8
1135.1
1334.9
1022.5

Income is again used as the growth variable in the NortheasL and

North Central regions, while value added in manufacturing is used in the

South region. Regressions were run using alternative growth variables,

but they were not as significant. Note that both the gas and oil prices

appear significantly in the Northeast and South, but the price of gas

was not significant and was thus omitted in the North Central equation.

State dummy variables are included, this time in both the North Central and

South equations. Again, the South equation is barely significant.

2
R = 0.19 F = 4.2

State

AL
AZ
AR
CA
CO

FL

GA
ID

KS

KY

LA
MS
NV
NM
NC

OK
OR
SC

TN
TX
UT
WA
WY
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Alternative regressions for industrial demand are shown in Table 4. 8

These regressions differ in the choice of growth variables (population,

income, and value added), choice of time lags, and the use of state

dummy variables. As before, state dummy variables were chosen for the final

forms so as to improve the overall fit of the equations without decreasing

the significance of price and growth variables. Those equations in the text

would seem to be preferred for a policy model designed to analyze price controls,

so that they are included in the final version of the simulation model.3 1

31It is important to point out that although three regions--the Southeast,
South Central, and West--were merged into one in our oil demand equations,
it is still possible to determine oil demand (under different price
policies) for each of the regions over which gas demand equations are
estimated. Values for price, income, etc., for each particular state are
simply inserted into the equations when the model is simulated. The
merging of three regions is simply a pooling process that is used because
consumption in those regions is small and erratic, so that it is impossible
to estimate individual equations (that are statistically significant) for
each region. This does not limit our ability to analyze changes in demand
on a regional basis.
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4.9, Interregional Flows of Gas in the Econometric Model

As explained in Section 3.7, interstate gas production is allocated

from 8 producing regions to 40 demand regions through a set of static

input-output coefficients fij and gij which determine, respectively, the

fraction of state i's gas which comes from supply region , and the fraction

of district j's production which is supplied to state i. The only further

allocation is between intra- and interstate markets; this is made according to

a price-dependent distribution equation. In this section we describe the method

used to calculate the input-output coefficients, as well as the estimation of

the interstate-intrastate distribution equations. The actual breakdown of

producing and consuming regions used in the model is shown in Table 4.9.

In estimating the I-O coefficients for gas from the different supply

regions to each demand region, there are three determining factors: (1) how

much gas each pipeline company obtains from each production region,(2) how

much is delivered to each state, and (3) how much each state obtains from each

pipeline company. These are accounted for as follows. First, a schematic

diagram is drawn for each pipeline company (see the example in Figure 4.1 in

which the sale of gas in each state is represented by a square and each

pipeline segment by a horizontal directed arrow. A purchase by the pipeline

in a given state is represented by an incoming vertical arc which is labeled

by type (i.e. field purchases and pipeline's own production (A), or purchases

from another pipeline (0)). Sales are similarly represented by outgoing

vertical arcs.3 2

32
These diagrams are based on the FPC map, Princpa turl Natur as lPiplInes

in the U.S. as well as on pipeline sales data extractted from FI'(: Form II
reports.
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TABLE 4.9

PRODUCING AND CONSUMING REGION BREAKDOWNS

Aggregated Producing Regions

1. Mid-Continent Texas 10
Oklahoma
Kansas
Arkansas

2. Permian New Maxico San Juan
New Mexico Permian
Texas 7C

Texas 8

Texas 8A
3. Mid-Texas Texas 1

Texas 9

Texas 5

Texas 7

4. Gulf Coast Texas 2
Texas 3

Texas 4

Louisiana South (onshore)
Louisiana South (offshore)
Louisiana North
Mississippi
Texas 6

5. Rocky Mountain Colorado
Utah
Wyoming
Montana
Nebraska
North Dakota

6. California California Intrastate
7. Appalachia West Virginia

Kentucky
Pennsylvania
Michigan
New York
Ohio

8. Canada Canadian Imports

Aggregated Consuming Regions (for Table 4.9)

1. NE Maryland-Delaware, New England,
New Jersey, New York, Ohio

Pennsylvania, West Virginia, Virginia
2. NC Illinois, Indiana, Iowa, Michigan

Minnesota, Missouri, Nebraska,
South Dakota, Wisconsin

3. SE Alabama, Florida, Georgia, North
Carolina, South Carolina,
Tennessee, Kentucky

4. SC Arkansas, Kansas, Louisiana,
Mississippi, Oklahoma, Texas

5. W Arizona, California, Colorado,
Idaho, Nevada, New Mexico, Oregon,
Utah, Washington, Wyoming

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

1. AL Alabama
2. AZ Arizona
3. AR Arkansas
4. CA California
5. CO Colorado
6. MD Maryland

Delaware
District of
Columbia

7. FI, Florida

8. GA Georgia
9. ID Idaho

.0. IL Illinois

.1. IN Indiana

L2. IO Iowa.

L3. KS Kansas
L4. KY Kentucky
.5. LA Louisiana
L6. MI Michigan
L7. MN Minnesota
8. MS Mississippi
[9. MO Missouri
!0. NB Nebraska.
21. NV Nevada
2. NE New England
!3. NJ New Jersey
4. NM New Mexico
25. NY New York
26. NC North Caroli a
27. OH Ohio
28. OK Oklahoma
29. OR Oregon
30. PA Pennsylvania
31. SC South CarolilLa
32. SD South Dakota

33. TN Tennessee
34. TX Texas
35. UT Utah
36. VA Virginia
37. WA Washington
38. WV West Virginia
9. WI Wisconsin
.0. WY Wyoming

Consumers
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Figure 4. 1

Florida Gas Transmission Pipeline System Model

Transcontinental
Gas
Pipeline

Sales for
Resale
in Florida

Sales

------- Transmission

4c--- Purchases

Texas Texas Texas
RR #2 RR #3 RR #4

Louisiana Southern Mid
South Natural Louisiana

Gas Gas Co.

Sales for
Resale.
in Texas

Mainline
Sales
in Texas

330 miles 600 miles



From these diagrams it is possible to determine how different production

districts feed gas into different states along each pipeline. Figures on

sales and purchases from 1966 to 1971 are used to

estimate on a state by state basis the approximate fraction of sales which

have come from each of the eight supply regions along each pipeline. For the

majority of pipeline companies, this estimation is trivial as they receive

gas from only one region, and hence the fractions are 1.00 or 0.00. Some

companies, however, receive gas from several regions and other pipelines as

well, and in these cases estimates (assumed to be time-invariant) are made

33
from simple calculations based on the more recent :FPC Form II data. The next

step involves multiplying every sale made by an interstate natural gas pipe-

line company (other than sales to other interstate pipeline companies) by

these fractions and then summing the products over the various pipelines:

S =Ea t (66)
Sij k ijktik

Sij = total sales in state i from production district j

tik = sales in state i by pipeline k

aik = fraction of pipeline k's sales in state i coming from
production district j.

This quantity (Sij) is then divided by the total quantity of gas de-

livered to state i and by the total quantity of gas supplied to the states

by supply district j, to determine, respectively fiJ and giJ:

S..

f = -i- (67)
ij ij

33 'For example, Consolidated Gas Supply gets approximately 11% of its gas from
Appalachia and 89% from Gulf Coast, while Michigan-Wisconsin Pipeline Company
delivers Midcontinental gas to Kansas, Missouri, Iowa, Illinois, and Wisconsin
but Gulf Coast gas to Louisiana, Tennessee, Indiana, Ohio and Michigan.
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S..

ij = ES ij

where fij = fraction of state i's gas obtained from supply region j,

and gij = fraction of gas supplied by district j which goes to state i.

The. coefficients were calculated for each year over the period 1966

through 1971, and are shown for three representative years in Tables 4 .10a

_b, and c.'34 Note that the coefficients do change somewhat over time, since

the quantities sold by each company to each state varied over this period.

The variations, however, are usually less than 10%, so that we may treat the

coefficients as constant. We use the coefficients calculated for 1971 in the

final simulation model,3 5

This procedure has been . altered somewhat to account for those sales of

gas which are not regulated by the FPC and which therefore are not included

in the Form II reports--that is, intrastate sale and lease .and plant fuel

sales. We account for these sales by using the identity

inter intra LPF (69)

J j 3 j j

where

P. = total production in district j

inter
S = total sales by producers of gas in district j to interstate

pipeline companies

The taDles present a reduced verions of the complete input-output matrices
(which specify demand on a state-by-state basis). In these tables demand is
aggregated into 5 large demand regions.

35Time-varying coefficients were also estimated which were functions of the
prices offered by the producing regions to the consuming regions. Regressions
were run in which the dependent variable was the fraction f., and the inde-
pendent variables were the prices offered by each of the regions that supply.
the given consuming region. (The regression coefficients were constrained so
that the fractions would always add to one.) The estimation results were
largely insignificant because there was too little variance in the dependent
variables--largely due to the rigidity of the pipeline structure and the
supply shortages brought on by regulation. Consequently the constant input-
output coefficients were used.
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S ntra= total intrastate sales in district j

SPF = lease and plant fuel sales in district j

L losses, including losses in extraction of natural gas jiquids

Since the production figures of the API and AGA 3 6exclude extraction

losses and since intrastate and lease and plant fuel losses due to trans-

portation are expected to be relatively small, we can write:

intra LPF in te r
(70)S + S = 5inteS

J J j j

where P is the AGA estimate of production in district j. These sales (left-

hand side of (70)) are then added to Sij for those states which produce gas

and equations (67) and (6&) are used to calculate the fij and gij.

One remaining computational problem is that of allocating supplies

of gas between inter- and intrastate markets. We argued in Chapter 3 that

the fraction of gas allocated to intrastate sales (PCT) in gas-producing

states should be a function of the ratio of the intra- and interstate prices,

Pi /Pot. The simplest functional specification for this fraction would be:

PCT = c + Cl(Pin/Pout) (71)

This equation can be estimated on a region-by-region basis, or all the regions

can be pooled and a single estimate of c1 obtained. The coefficient cl

should have a positive sign since we expect production supply to depend

positively on price.

The PCT series was derived from the FPC Form II data Intrastate sales

were available on a state-by-state basis, making it straightforward to ag-

gregate states served by a given producing region. The only computational

problem was the state of Texas, since it obtained intrastate gas from four

regions (Midcont., Permian, MidTexas, Gulf), while no

3 6Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the U.S. and
Canada AGA, API, CPA.
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state received intrastate gas from more than one region. Texas intrastate

sales were therefore divided among the four regions in the same proportion

as total sales in Texas (this is reasonable since less than 15% of gas con-

sumption in Texas is interstate). Total intrastate sales could then be

divided by total sales in that region to obtain the percentage estimate.

Interstate prices were obtained by averaging Table F data for each

district, weighted by total production. Intrastate new contract prices

were obtained from FPC Docket No. R-389A, which were averaged and weighted by

total production to obtain regional new contract prices. These were then

"rolled in" to obtain average intrastate wellhead prices by region.

Equation(71) was estimated over the years 1966-71 using data from five

supply regions. California was omitted from the estimation because all gas

produced there is assumed to be intrastate; Canada was omitted because

any gas produced there that enters the U.S. is by definition interstate: and

Kentucky and West Virginia were omitted because almost all of their gas

production has been interstate.

It was expected that the dependence of percentage allocation on the

ratio of prices would vary among production regions, and some attempt was

made to account for this heterogeneity when estimating equation(71). It

was found that best estimates were obtained through the use of two separate

regression equations, the'first estimated over the Midcontinent, Permian,

Mid-Texas, and Rocky Mountain production regions (but including regional

intercept dummy variables), and the second estimated over only the Gulf

region. The estimation results are shown below in equations (72) and (73)

which apply, respectively, to the four pooled regions and to the Gulf region:

3 7The "roll-in" equation is given in footnote 18 in Section 4.4.
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PCT = -0.463 - 0.O11DPERM - 0- 0.252DTEX + 0.499DMTN + 0.841(Pi /P )
(-1.39) (-2.62) (-4.10) (11.61) (2.50) (72)

R = .962 F(4/19) = 120.5

PCT = -0.202 + 0.507(P /P ) (73)
(-0.49) (1.28) in out

R2 = .290 F(1/4) = 1.63

Equation(72) fits the data well, with the relative-price term significant

at the 95% level. Although equation(73) as a whole is not significant at the

90% level, the dependent variable has very little variance in the Gulf region,

so that the equation will be adequate for simulation purposes.38

In the final form of the model the static input-output coefficients

calculated for 1971 are used for all states, But in those five regions

where intrastate sales are significant, the relative price equations

(72) and (73) are applied to state sales first. In these states intrastate

sales are subtracted from consumption figures in Table 4.9.6, and new

fij and gij coefficients are calculated. In simulations of the model,

the fraction (1-PCT) of gas which leaves each producing region is allocated

via the gij coefficients to the different demand regions, and the remainder

is sold as intrastate gas within that production region.

38 The regression equations (72)and (73)provide no guarantee that PCT will
remain in the interval (0,1), thus logical operators are included in the
simulation program to prevent PCT from taking on values outside this interval.
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4.10. Summary

The estimated equations that are used in the final form of the model

are summarized on a block-byblock basis in Table 4.11 (with references to

the regression results in the text). Each equation was chosen not only

on the basis of statistical fit,'but also on how well the equation tracked

the actual data when simulated over an historical time period individually

or as part of the block to which it belongs.3 9

The statistical fit of the individual equations varies from block to

block, but on the whole is good, particularly considering the degree of

structural and regional detail in the model. The reserves equations have

the weakest fit and contain a good deal of unexplained variance, reflecting

the stochastic elements of the discovery process that do not conform to

economic laws. The production, offshore, markup, and demand equations all

fit the data well, however. The reserves equations are also the most non-

linear part of the model, so that errors 'in these equations, as they are

squared and multiplied, may become magnified during simulation of the model.

Since it is the level of reserves (and not reserve additions) that affects

production in the model, errors in the reserves equations should not accumulate

across other blocks of equations.

There are a total of only thitty-nine estimated behavioral equations,

but a much larger number of equations must be solved siniultaneousl.y when the

model is simulated. This is due to the regional structure of the model, and

the fact that equations were estimated by pooling cross-section and time-series

data. Thus although a single equation is estimated for the pipeline price

markup, forty equations must be written to explain the wholesale price in

39Much of the model's explanatory power, however, lies in the dynamic inter-
actions of variables both within and across- blocks, so that an important test
of the validity of the model is its ability to track historical data when
simulated as a whole. This overall historical simulation is described in
Chapter 5.
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each of forty demand regions when the model is simulated. Similarly, the

nine reserves equations become 180 equations that apply to 20 production

districts, the six wholesale oil demand equations become 80 equations that

determine (separately) residential/commercial and industrial oil demand

in each of the forty demand regions, etc.

In addition to this "multiplication" of the behavioral equations,

all of the accounting identities in the model are "multiplied" (e.g.,

equations defining cumulative wells drilled, total reserves, etc., must be

written for each production district). Finally, the input-output matrix

must be expressed as a set of simultaneous equations that determine gas

flows from producing to consuming regions. As a result the model, in its

simulation format, contains some 1250 equations (or "statements") that must

be solved simultaneously.

00M. Simulation results for the model are presented in the next chapter,

We will first examine a simulation of the model over an historical time

period, and this will test the ability of the model as a whole to reproduce

the actual behavior of gas markets, Then we will present the forecast

simulations that were used in the policy analyses of Chapters 1 and 2.
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Table 4.11

Estimated Equations of the Model

Block

Reserves

Production
(onshore)

Offshore
,Model

Price Markup

Wholesale Gas
Demand

Wholesale Oil
Demand

Interregional
Flows

Variables Explained

Exploratory Wells (WXT)

Size of Discovery, gas
and oil (SZG,SZO)

Success Ratio, gas and
oil (SRG,SRO)

Extensions, gas and oil

(XG,XO)

Revisions, gas and oil
(RG,RO)

Production out of reserves

(QG), for each of 3
regions

Acreage, Reserves,
Production (WWT,DG,
XRG, FWT, QG, ACRD,
ACPN).

Wholesale Gas Price(PGW)

Res./Comm. Demand (TgCS)
and Indus. Demand(TINS)
for each of 5 regions;

Extraction fuel demand
(FS)

Res./Comm. Demand (QO2)
and Indus. Demand(RSID)
for each of 3 regions.

Input-Output Coefficientf

Intrastate Allocations
(PCT) for each of
2 regions

Number
of Equa.

1

2

2

2

2

7

1

11

6

2

Estimation
Method

T

GLS,

with single p
for all districts

I

Second-order
serial corre-
lation with
TSLS.

GLS

GLS with TSLS

GLS

see Section 4.9

GLS

Equation Numbers
in Text

(16)

(17), (18)

(19), (20)

(21), (22)

(27),

(34),

(38),

(40),

(28)

(37)

(39)

(41), (42)

(43)

(47), (48), (49)

(50), (51), (52)

(53), (54), (55)

(56) ,(57)

(60),(61),(62),

(63),(64),(65)

Tahl 4 9 Qr

(72), (73)

'A (1-7. I - 4 #- PQ f a, ) \ 03 
_· XJX WlLLL 1-JIzJ k ":7 ) , - U , \)JL 

--

~~~r- u\ . , _
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CHAPTER 5:

SIMULATIONS OF THE ECONOMETRIC MODEL

The model of the natural gas industry described in the last two

chapters consists of a set of equations which have been specified and

estimated independently from each other. Taken one at a time, these

equations are of limited use for forecasting the behavior of the gas indus-

try. As we said in the beginning of Chapter 3, in order to analyze the

industry it is necessary that one take into account the simultaneous inter-

action of supply and demand on both field and wholesale levels, i.e., that

one view the industry as a complete system. This is done by simulating

the model as a whole, i.e., by solving as a simultaneous system the set

of equations that comprise the model.

In this chapter, simulation results will be presented that relate to

both the past and future behavior of the natural gas industry. Ln Section

5.1, we examine a simulation performed over a; period in the recent past,

namely 1967 through 1972. This historical simulation serves an important

purpose. By comparing the simulated with the actual historical values of

the endogenous variables in the model, we can determine how well the model

reproduces the behavior of the industry, and this provides one measure of

model validation. If, for example, the simulation shows no upward or down-

ward bias in production over time, it might be expected that the model's

predictions for future excess would show no bias when compared to actual

values five years hence. On the other hand, any bias in the historical

simulation might be expected to be repeated in forecasting.

In the second set of simulations we use the model for forecasting and

The word "simulation" simply refers to the solution of a set of simul-
taneous time-dependent equations.
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policy analysis. In Section 5.2 simulations are presented for the model

through'the year 1980, under alternative regulatory policies and alter-

native assumptions about future economic conditions. These alternative

forecast simulations have been discussed in Chapter 2 in the context of

their policy implications. In this chapter, we examine them in more

detail and determine how sensitive they are to assumptions made about exo-

genous economic variables. Finally, in Section 5.3, we illustrate the

diverse uses of the model by forecasting the demands by region of a gas

substitute contingent on Federal price policies for gas in the field.

5.1. Historical Simulations

An historical simulation is performed by using actual 1966-1972 values

for the exogenous variables and actual 1966 values for the endogenous var-

iables as "start up" values to solve the model for 1967-1972 values of

the endogenous variables. The computed values are shown for the most import-

ant endogenous variables of the model in Tables 5.1 through 5.20. In

addition to listing the simulated values, actual values, and errors for

each variable, we indicate the mean and root-mean-square (RMS) simulation

errors.

Additions to reserves and its components for both gas and oil are

shown in Tables 5.1 and 5.5. Although total wells drilled is simulated

with an RMS error of only 12 percent, these errors are combined with errors

from the success ratio and size of discovery equations so that new discov-

eries of natural gas simulate with an RMS error that is about 40 percent

of the mean actual value. New discoveries of oil have a percentage RMS

error that is relatively smaller, as smaller errors are introduced in the

oil success ratio. Combined with errors in extensions and revisions, addit--

ions to reserves for natural gas have an RMS error that is about 50 percent
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of the mean actual-value, and additions to reserves of oil have an RMS

error that is about 20 percent of the mean actual value.

Although these RMS errors are large in magnitude, particularly for

natural gas, we can observe from the tables that most of the error occurs

in one year, namely 1968, when the model fails to reproduce a large one-

year decrease that occurred in new discoveries. (The very low level of

new discoveries in that year is impossible to explain on economic grounds or

on the basis of geological conditions). Much of the remaining error in additions

to gas reserves comes from revisions which, as explained in Section 3.2, is

an erratic series that is difficult to analyze in an econometric model. The

model simulates positive (though small) gas revisions over the entire period,

while actual gas revisions were negative from 1969 to 1972. The net result is

that the model overpredicts additions to gas reserves. For these reasons the

level of total gas reserves is overpredicted by about 10 percent by 1972.

Simulation values for production, the average wellhead price, and the

average wholesale price are all shown in Table 5.7. Although the simulated

values for total reserves are too high by about 6 percent in 1970 and 9 percent

in 1971, the simulated values for production in 1971 and 1972 are almost exactly

equal to the actual values. Although this is in part a result of emphasis in

the production model on variables other than reserves, in part it is a result

of too-high predictions of reserves-to-production ratios.

In all, it is not possible to say that policy analysis of the 1960's

would have been much affected by upward bias in historical simulations of

reserves, and downward bias in reserve-production ratios. Policy analysis

is focused on gas production and demand, and the dependence of these on

regulated prices. We thus place a greater emphasis on the ability of the

model to reproduce past behavior of production, demand, and prices in eval-

uating its applicability to such policy analysis.



As can be seen in Table 5.7, gas production is simulated with an

RMS error that is about 2 percent of the average actual value. Average

wellhead and wholesale prices are simulated with RMS errors that are

respectively 1 percent and 3 percent of their average values, so that the

field price "roll-in" mechanism is being accurately represented, as is the

price mark-up charged by pipeline companies.

Simulation results of the demand for gas are shown on a regional and

sectoral basis in Tables 5.8 through 5.15. Simulated values for demand in

all regions are close to the actual values, with average RMS errors that

range from 1 percent to 6 percent. The larger errors occur in the Soutl

Central region, which is not surprising in view of the poor statistical.

fits of the demand equations that were estimated for that region.2

Finally, historical simulation results for wholesale oil demand are

shown by region and by type (distillate oil for residential/commercial

use and residual oil for industrial use) in Tables 5.16 through 5.20.

Although simulations for oil demand are not as close to the actual values

as in the case for natural gas demand, the RMS simulation errors are generally

less than 10 percent of the mean actual values, so that we have enough

confidence in this part of the model to include an analysis of wholesale

oil markets in our forccasts under alternative policy assumptions.

In summary, the historical simulation shows a small upward bias

in the prediction of reserve levels, but this is counterbalanced by an over-

prediction of the reserve-production ratio, so that there is no net bias

in predictions of natural gas supply. This would indicate that our policy

analyses and estimates of future gas shortages are, if anything, somewhat

conservative.

2Simulated values for both production demand and supply are much closer to the
actual values than was the case in the earlier version of this model described
in P.W. MacAvoy and R.S. Pindyck L57], and demand equations have essentially
the same functional form that they did in that earlier model. We attribute
at least part of the improvement in the model's simulation performance to thel
GLS technique that was used in its estimation.
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5.2. Use of the Model for Forecasting and Policy Analysis

Chapter 2 presents,in summary form, a set of simulations of the model

through the year 1980 under alternative regulatory price policies. In this

section, we examine these simulation results in more detail, so as to' ascer-

tain to what degree they are dependent upon assumptions on field and wholesale

prices of oil, as well as on economic variables such as GNP and the rate of

inflation.

In fact the forecasts in Chapter 2 are based on a specific set of values

for the variables that are expected to hold during the 1970's. The important

exogenous determinants of demand for gas and oil include state-by-state

value added in manufacturing, population, income, and capital equipment

additions. It is assumed that value added, income, and capital additions

will grow at 4.2 percent per annum in terms of constant dollars.3 We chose a

-conservative expected rate of growth of prices of 6.5 percent; the rate of

inflation likely to prevail in the late 1970's is rather uncertain and is under

considerable debate, and the rate of 6.5 percent simply represents a rough

average of several inflation forecasts that have been made recently. Thus,

value added, income and capacity grow at 10.7 percent in current dollar

terms. It is assumed that the rate of growth of population will be limited

to 1.1 percent per annum for the rest of the decade (in keeping with the

assumptions used in the economy-wide models for generating the rates of

growth of value added and capacity). The domestic price of crude oil

is assumed to remain constant at $6.50 per barrel in 1974 dollars for

the remainder of the decade, and wholesale prices for both distillate

and residual oil are also assumed to remain constant in real terms.

Finally, average drilling costs are expected to increase at a rate of

3.3% per annum in real terms, in keeping with the trend of cost increases

3This assumption is based on the Data Resources Quarterly Economic Model
forecast for the period 1972 to 1.980.
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over the late 1960's and early 1970's.

These values of the exogenous variables can be altered, and new

values inserted into the model to produce new simulations that would

indicate how the forecast results presented in Chapter 2 would depend

on the particular assumptions that have been made. It is of particular

interest to determine how these results depend on the assumptions made

regarding the price of oil (the future of which is open to considerable specu-

lation), as well as assumptions made regarding general economic conditions

such as the growth in output and the rate of inflation. As an alternative

to the set of "medium" assumptions for exogenous variables described

above, we have chosen "high" and "low" assumptions for both oil prices

and economic variables.

In contrast to the "medium" scenario for oil prices, we offer a "low"

scenario in which the crude oil price declines by 25¢ per barrel each year (from

$6.50 in 1974 to $5.00 in 1980) and a high scenario in which the price of

crude oil increases from $6.50 per barrel in 1974 to $7.50 per barrel in 1980

(again in constant 1974 dollars). Wholesale oil prices (as well as prices

for alternative fuels such as coal and electricity) are assumed to change in

these scenarios at the same percentage rate as the crude oil price.

In contrast to the "medium" scenario for economic growth, we offer a 'low
'

scenario in which output variables (such as income, value added, and capital

additions) grow at 2.5 percent in real terms with a rate of inflation of

4.0 percent, and a high scenario in which output variables grow at 5.0 percent

in real terms and the rate of inflation is 8.0 percent.

5.2.1. Alternative Forecasts for Natural Gas and Oil

: Alternative simulation results for the three oil price scenarios are

shown in Table 5.21. In this table, it is assumed that the !'FPC Regulation"

policy . on natural gas is in effect. Alternative results for the "Phased deregu-

lation" price policy are shown in Table 5.22.
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Under the "FPC Regulation' policy, new discoveries and additions to reserves

are affected by the particular assumption made regarding oil prices, but there

is less sensitivity under the 'Phased Deregulation" policy. The reason for

this is that when gas prices are low, as under regulation, a higher oil price

serves as an incentive for additional exploratory drilling which results in

significant additional gas discoveries.. But when the price of gas is allowed

to rise, as under "Phased Deregulation", there is already sufficient incentive

for exploration on the extensive margin,and the additional incentive provided by

the higher oil price is largely to increase directionality towards oil drilling.

In both the "FPC Regulation" and the "Phased Deregulation" policies the

changes in oil prices add little more than 2 or 3 trillion cubic feet to total

gas reserves. With small changes on reserves, the level of gas production

remains almost the same under all three ceiling price scenarios. Demands for

production, however, are quite sensitive t the. price of oil.i Under a scen--

arieod6f low oil prices, for example, there is a shift in demand from natural

gas to oil, and in 1980 the excess demand for natural gas is only 2.7 trillion

cubic feet under the "FPC Regulation" policy. Under these oil price conditions,

with "Phased Deregulation" the shortage of gas could be eased fairly soon. If

oil prices decline in real terms by 5 percent per year, a field price increase

for natural gas of only 10¢ or 15¢ in 1974 and 5 per year thereafter would

be sufficient to clear markets by the end of the decade...

Alternative simulations for the three economic scenarios are shown for

the "FPC Regulation" policy and the "Phased Deregulation" policy in Tables 5.23

and 5.24. Again there is relatively little variation in the level of production,

but the demands for gas vary significantly. Under conditions of relatively

slow economic growth, for example, the excess demand for natural gas in 1980

under the "FPC Regulation" policy is predicted to be 4.0 trillion cubic

feet, in comparison with 8.4 trillion cubic feet under the medium economic

economic scenario and 11.0 trillion cubic feet under the high economic
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scenario. This is not-unreasonable in terms of direction; any decline in the

long-term rate of growth for the American economy ought to reduce the rate of

growth of demand for natural gas (as well as for other energy resources). If

the rate of economic growth is slower than we have anticipated in our medium

economic scenario, then smaller increases in the field price of gas will be

necessary to clear natural gas markets by the end f the decade.

The econometric model can also be used to forecast the impact of alternative

natural gas regulatory policies on the supply and demand for' oil. This impact

is of course also dependent upon the particular values chosen for the exogenous

variables. Forecasts are presented here for new discoveries, and total additions

to reserves, for crude oil under alternative regulatory policies for natural

gas, alternative oil prices, and alternative scenarios for economic growth.

Table 5.25 shows results for the "FPC Regulation" and "Phased Deregulation"

gas price policies under the-three alternative oil price scenarios and the

three alternative economic scenarios. As can be seen, total additions to

oil reserves grow by about 30 -percent over the eight-year pariod 1972-1980

under both the "FPC Regulation" policy and the "Phased Deregulation" policy.

Changes in reserves are slightly dependent on assumptions made about oil

prices and economic variables (a 15 percent increase in the price of crude

oil, for example, results in only a 3 percent increase in additions to oil

reserves by the end of the decade). One might expect both an increase in

well drilling and an increase in oil discoveries to result from higher oil

prices. There is an increase in well drilling, but a slightly lower oil

success ratio combined with only a small increase in discovery size (due

in part to depletion) results in only modest increases in discoveries.

Alternative forecasts for wholesale oil demand under the "FPC Regulation"

golicies.are shown in Table 5.26 through 5.29. As can be seen from

those tables, the demand for oil is dependent on future oil prices -
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and rates of economic growth, as well as on gas regulatory policies. These

dependencies vary, of course, from region to region as well as between

residential and industrial demand. However, oil demand generally shows

more long-term responsiveness to the oil price in the Northeast and North

Central regions of the country, and less responsiveness in the Southeast,

South Central, and West regions. Oil demand shows a great deal more responsive-

ness to the price of gas, and can be seen by comparing Tables 5.26 and 5.28

and Tables 5.27 and 5.29. There is also greater dependence on economic growth

variables in the Northeast and North Central regions than elsewhere for resi-

dential demand, and greater dependence on growth in all regions for industrial

than for residential demand.

These patterns could have been predicted from the regression equations

alone. Those growth variables accounting for a large fraction of the explained

variance in the regression equations also have the greatest effect on the

simulations. The results are reasonable in view of the magnitudes of

price increases and economy-wide growth in the past.

5.5.2. Simulations of Alternative Offshore Leasing Policies

Government policies affecting the natural gas industry include not

only field price regulation but also the leasing of offshore lands for

exploration, development, and production. Alternative offshore leasing

policies can be simulated with the econometric model since the number of

*acres leased each year is an exogenous policy variable in the "offshore sub-

model", and affects (through reserve additions) offshore production.

*All of the simulation results presented above are based on the assumption

that two million-acres of offshore lands would be leased each year by the

Department of Interior's Bureau of Land Management. Simulation results for

additions to reserves and production are shown in Table 5.30 for the

alternative leasing policies of one million and three million acres per year.
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These results are presented for the "FPC Regulation" and "Phased Deregulation"

field price policies, and in both cases "medium" oil price and economic

conditions are assumed.

As can be seen from the table, additions to reserves and production

show very little sensitivity to the number of offshore acres leased annually.

An increase of one million acres in offshore leasing results in only a 1 percent

increase in production of gas by 1980. This is significant.because it has

been claimed that more liberal offshore leasing policies will serve to

ameliorate the shortage of gas caused by stringent field price regulation.

In fact the model indicates that expansion of offshore leasing will not

significantly reduce future shortages of gas.

5.3. The Demand Function for Liquified Natural Gas

The model has other forecasting and analysis applications besides those

dealing with FPC field price regulation. As an example, the econometric

model can be used to determine the demand function for Liquified Natural

Gas (or another substitute for natural gas) in different regions of the

country under one or another particular field price regulatory policy. We

explain in detail here how the LNG demand function is calculated, and present

demand schedules for different regions of the country under the "FPC Regulation"

price policy.

The demand function for. Liquified Natural Gas is assumed to be the

excess demand persisting after the supply of natural gas from existing

sources, both onshore and offshore, has been parceled out regionally. Thus,

the LNG demand function is obtained by horizontally subtracting supply

from the demand function for natural gas in each region. This LNG demand

function is of course conditional on the particular FPC price policy that

is in effect.
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It should be noted, however, that the demand function for natural gas

that is relevent for this purpose is not the estimated equation in a particular

region, but must be derived from simulations of the entire'model. There are

several reasons for this. First, the model determines demand in individual

states through regional demand equations that contain exogenous variables

(population, income, etc.) that, along with dummy variables, vary from state

to state. This means that we cannot determine a price-quantity relationship

for wholesale gas demand on a regional basis independent from exogenous and

dummy variables. Furthermore, residential/conmmercial and industrial demand

equations have been estimated separately, and there is no way of "summing"

across states or across residential/commercial and industrial demand to

form an aggregate demand function that is a relationship between quantity

demanded and wholesale price. Finally, the input-output table in the model

allocates flows of gas between producing and consuming regions, not to the

level of individual states. By calculating simulated values of gas demand

by state and by residential/commercial and industrial markets, along with

regional supplies obtained after feeding in relevant values of the exogenous

variables and other policy parameters, we estimate a weighted-average wholesale

price and wholesale demand by region for each price simulation. By performing

enough simulations (varying the regulated field price across simulations),

sufficient "data points" can be obtained for price and demand to allow esti-

mation of regional demand functions (i.e., quantity demanded in the region

versus the weighted-average wholesale price).

Our estimation procedure, then, begins by obtaining total demand schedules

for natural gas by region, for the three important excess demand regions,

Northeast, North Central, and West. These demand schedules are of the

form:



-244-

XXWD = cO + clXXWP0 1

where XX represents a regional prefix, and WD and WP are the wholesale demand

and wholesale price respectively. Thus the schedule is a.relationship between

total quantity and weighted-average price. Once equation (I) has been

estimated by a regression equation on the data derived.for each region, we

determine the LNG schedule by simulating the following equation for each

4
region of the country:

4Equation (2) is simply another way of writing equation .(1), except that total
gas demand is set equal to supply plus excess demand, and this excess demand
is assumed to be the demand for LNG. P is the wholesale price (resulting
in excess demand LNGD) and P** is the weighted-average price that results
from P and the LNG price for that portion of (excess) demand. The equation
is illustrated graphically in Figure 5.1. Note that in the figure, LNGP
is the price at which LNG can be sold to that volume exceeding SUP and
satisfying total demand at P**. By simulating equation (2) we find pairs of
values (LNGP, LNGD) that make up the LNG demand schedule.

Figure 5.1 Calculation of LNG Demand Schedule

price

LNGP

P

P

(domestic
gas)

... ,. Q

LNGD. sup
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XXLNGD + XXSUP = c +

cl[((XXLNGD· XXLNGP) + (XXSUP· XXP)) /(XXLNGD + XXSUP)] (2)

The coefficients c and c1 in equation (2) take on the values of the regression

estimates of equation (1) in each region of the country. It is also

important to remember that the data from which equation (1) is estimated

are simulation results that apply to a single year, and that the simulation

of equation (2) and the resulting LNG demand schedule should apply to

the same year.

We have estimated equation (1) over the Northeast, North Central,

and West regions, using simulation results for the year 1980. These

regression results are shown below as equations (3), (4), and (5). Note

that the number of observations used in each regression is simply equal

to the number of states in the particular region.

Northeast:

NEWD - 7.18x10 - 21,600NEWP (3)
(90.9) (-32.0)

2 5.29X10 4

R = 0.99 F = 1023 S.E. 5.29xlO

North Central:

NCWD = 1.261x10 - 469500 NCWP (4)
(76.5) (-28.9)

2 1l0 5

R = 0.99 F = 834 S.E. 1.18x10

West:

WWD = 6.73x106 - 22 300WWP (5)
(96.9) (-29.7)

2 4

R = 0.99 F = 884 S.E. = 4.89x10

At this point we determine the LNG demand schedule in the Northeast, for

example, by taking the estimated values of c and c1 from equation (3),
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substituting them in equation (2) and simulating equation (2) for various

LNG prices to determine LNG demand at those LNG prices in 1980. This is

repeated for the North Central and West regions to determine three regional

LNG demand schedules, all of which apply, of course, tothe "FPC Regulation"

field price regulatory policy. The schedules are shown in Table 5.31. It

is interesting to note that the table indicates that the greatest demand

for LNG will be in the North Central region, ranging from 5.5 trillion cubic

feet at a price of 50¢ per Mcf to 2.2 trillion cubic feet annually at a price

of $2.50.

Although the magnitudes of LNG differ considerably from region to region,

the demand elasticities do not differ widely. We have calculated average demand

elasticities based on the schedules of Table 5.30 equal to -0.44 for the North-

.east, -0.61 for the North Central, and -0.43 for the West. Of course these

demand elasticities and the schedules from which they were derived are completely

dependent on a particular natural gas regulatory policy, and an alternative

policy-would result in different LNG demand schedules and possibly different

elasticities of demand.

5.4. Summary

The derivation of the LNG demand schedule is just one example of how the

model can be applied to forecasting and policy analysis problems. There are

other interesting applications. For example, it is straightforward to use the

model to measure the gains and losses that would result from Federal allocation

policies that shift gas from one region of the country to.another. This would

involve adding .equations to demand regions according to criteria other than

the input-output matrix (this would be similar to the method used now to

allocate gas between intra- and interstate markets). Another application example

would be to measure gains and losses resulting from the regulation of intrastate
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TABLE 5.31: Regional LNG Demand Schedules for the Year 1980
Under "Status Quo" Policy

(Demands in trillions of cu. ft.)

Price of LNG
(cents per mcf)

50.

55.

60.

65.

70.

75.

80.

85.

90.
95.

100.
105.

110.
115.

120.

125.

130.

135.

140.

145.

150.

155.

160.

165.

170.

175.

180.

185.

190.
195.

200.

205.

210.

215.

220.

225.

230.

235.
240.

245.

250.

Northeast
Demand

0.3441
0.3361
0.3286
0.3213
0.3143
0.3076
0.3012
0.2950
0.2890
0.2833
0.2778
0.2725
0.2673
0.2624
0.2576
0.2530
0.2486
0.2443
0.2401
0.2361
0.2322
0.2284
0.2247
0.2212
0.2177
0.2144
0.2111
0.2080
0.2049
0.2019
0.1991
0.1962
0.1935
0.1908
0.1883
0.1857
0.1833
0.1809
0.1785
0.1763
0.1740

North Central
Demand

5.500
5.364
5.231
5.101
4.974
4.850
4.729
4.611
4.496
4.383
4.274
4.167
4.064
3.963
3.865
3.770
3.678
3.588
3.501
3.417
3.335
3.256
3.180
3.105
3.033
2.964
2.897
2.831
2.768
2.707
2.648
2.591
2.536
2.482
2.430
2.380
2.332
2.285
2.239
2.195
2.153

West
Demand

0.2113
0.2066
0.2021
0.1977
0.1935
0.1895
0.1857
0.1820
0.1784
0.1750
0.1717
0.1685
0.1654
0.1624
0.1596
0.1568
0.1541
0.1515
0.1490
0.1466
0.1442
0.1420
0.1398
0.1376
0.1355
0.1335
0.1316
0.1297
0.1278
0.1260
0.1243
0.1226
0.1209
0.1193
0.1177
0.1162
0.1147
0.1132
0.1118
0.1104
0.1091



gas so as to make its price always equal to the interstate price. Such a

policy would change the allocation of supplies and would also affect the

levels of supply and demand, and the extent of the impact could be measured

using the model.5

Detailed econometric models of particular industrieshave been applied

to forecasting and.policy analysis only over the past few years, and have

lagged the application of macroeconometric models. Industry models have

the same limitations as macroeconometric models--their forecasts are subject

to the errors that result from model misspecification, unexplained variance

in regression-equations, imprecise coefficient estimates and an inability

to accurately predict exogenous variables. This model of the natural gas

industry must also have these limitations. On the other hand, the model

provides a consistent framework that simultaneously accounts for the inter-

actions among producers, pipelines, and consumers in the gas industry and

determine its behavior with respect to regulation and other government policies.

Only the decade of the 1970's will tell whether its forecasts were accurate

and whether its lessons on regulatory policy were effective.

5

Individuals who desire to access the model for these and other simulation
experiments can write to the authors at M.I.T., Cambridge, Massachusetts,
U.S.A. for information on how to do so.
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