491 research outputs found

    Phenomenology Tools on Cloud Infrastructures using OpenStack

    Get PDF
    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of "real" physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.Comment: 25 pages, 12 figures; information on memory usage included, as well as minor modifications. Version to appear in EPJ

    Phenomenology Tools on Cloud Infrastructures using OpenStack

    Get PDF
    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage “virtual” machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on “virtual” machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.Peer Reviewe

    Can segmentation models be trained with fully synthetically generated data?

    Full text link
    In order to achieve good performance and generalisability, medical image segmentation models should be trained on sizeable datasets with sufficient variability. Due to ethics and governance restrictions, and the costs associated with labelling data, scientific development is often stifled, with models trained and tested on limited data. Data augmentation is often used to artificially increase the variability in the data distribution and improve model generalisability. Recent works have explored deep generative models for image synthesis, as such an approach would enable the generation of an effectively infinite amount of varied data, addressing the generalisability and data access problems. However, many proposed solutions limit the user's control over what is generated. In this work, we propose brainSPADE, a model which combines a synthetic diffusion-based label generator with a semantic image generator. Our model can produce fully synthetic brain labels on-demand, with or without pathology of interest, and then generate a corresponding MRI image of an arbitrary guided style. Experiments show that brainSPADE synthetic data can be used to train segmentation models with performance comparable to that of models trained on real data.Comment: 12 pages, 2 (+2 App.) figures, 3 tables. Accepted at Simulation and Synthesis in Medical Imaging workshop (MICCAI 2022

    Measurements and analysis of the upper critical field Hc2H_{c2} on an underdoped and overdoped La2xSrxCuO4La_{2-x}Sr_xCuO_4 compounds

    Full text link
    The upper critical field Hc2H_{c2} is one of the many non conventional properties of high-TcT_c cuprates. It is possible that the Hc2(T)H_{c2}(T) anomalies are due to the presence of inhomogeneities in the local charge carrier density ρ\rho of the CuO2CuO_2 planes. In order to study this point, we have prepared good quality samples of polycrystalline La2xSrxCuO4La_{2-x}Sr_xCuO_{4} using the wet-chemical method, which has demonstrated to produce samples with a better cation distribution. In particular, we have studied the temperature dependence of the second critical field, Hc2(T)H_{c2}(T), through the magnetization measurements on two samples with opposite average carrier concentration (ρm=x\rho_m=x) and nearly the same critical temperature, namely ρm=0.08\rho_m = 0.08 (underdoped) and ρm=0.25\rho_m = 0.25 (overdoped). The results close to TcT_c do not follow the usual Ginzburg-Landau theory and are interpreted by a theory which takes into account the influence of the inhomogeneities.Comment: Published versio

    Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI

    Full text link
    B[e] stars are hot stars surrounded by circumstellar gas and dust responsible for the presence of emission lines and IR-excess in their spectra. How dust can be formed in this highly illuminated and diluted environment remains an open issue. HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We obtained nine calibrated visibility measurements using the VLTI/MIDI instrument in SCI-PHOT mode and PRISM spectral dispersion mode with projected baselines ranging from 13 to 71 m and with various position angles. We used geometrical models and physical modeling with a radiative transfer code to analyze these data. The dusty circumstellar environment of HD 62623 is partially resolved by the VLTI/MIDI even with the shortest baselines. The environment is flattened and can be separated into two components: a compact one whose extension grows from 17 mas at 8 microns to 30 mas at 9.6 microns and stays almost constant up to 13 microns, and a more extended one that is over-resolved even with the shortest baselines. Using the radiative transfer code MC3D, we managed to model HD 62623's circumstellar environment as a dusty disk with an inner radius of 3.85+-0.6 AU, an inclination angle of 60+-10 deg, and a mass of 2x10^-7Mo. It is the first time that the dusty disk inner rim of a supergiant star exhibiting the B[e] phenomenon is significantly constrained. The inner gaseous envelope likely contributes up to 20% to the total N band flux and acts like a reprocessing disk. Finally, the hypothesis of a stellar wind deceleration by the companion's gravitational effects remains the most probable case since the bi-stability mechanism does not seem to be efficient for this star.Comment: 13 pages, 11 figures. A&A accepted pape

    Morphology-preserving Autoregressive 3D Generative Modelling of the Brain

    Full text link
    Human anatomy, morphology, and associated diseases can be studied using medical imaging data. However, access to medical imaging data is restricted by governance and privacy concerns, data ownership, and the cost of acquisition, thus limiting our ability to understand the human body. A possible solution to this issue is the creation of a model able to learn and then generate synthetic images of the human body conditioned on specific characteristics of relevance (e.g., age, sex, and disease status). Deep generative models, in the form of neural networks, have been recently used to create synthetic 2D images of natural scenes. Still, the ability to produce high-resolution 3D volumetric imaging data with correct anatomical morphology has been hampered by data scarcity and algorithmic and computational limitations. This work proposes a generative model that can be scaled to produce anatomically correct, high-resolution, and realistic images of the human brain, with the necessary quality to allow further downstream analyses. The ability to generate a potentially unlimited amount of data not only enables large-scale studies of human anatomy and pathology without jeopardizing patient privacy, but also significantly advances research in the field of anomaly detection, modality synthesis, learning under limited data, and fair and ethical AI. Code and trained models are available at: https://github.com/AmigoLab/SynthAnatomy.Comment: 13 pages, 3 figures, 2 tables, accepted at SASHIMI MICCAI 202

    The AMS-RICH velocity and charge reconstruction

    Full text link
    The AMS detector, to be installed on the International Space Station, includes a Ring Imaging Cerenkov detector with two different radiators, silica aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to provide very precise measurements of velocity and electric charge in a wide range of cosmic nuclei energies and atomic numbers. The detector geometry, in particular the presence of a reflector for acceptance purposes, leads to complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The results of different reconstruction methods applied to test beam data as well as to simulated samples are presented. To ensure nominal performances throughout the flight, several detector parameters have to be carefully monitored. The algorithms developed to fulfill these requirements are presented. The velocity and charge measurements provided by the RICH detector endow the AMS spectrometer with precise particle identification capabilities in a wide energy range. The expected performances on light isotope separation are discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F. Bara

    The RICH detector of the AMS-02 experiment: status and physics prospects

    Full text link
    The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV. It is equipped with several subsystems, one of which is a proximity focusing RICH detector with a dual radiator (aerogel+NaF) that provides reliable measurements for particle velocity and charge. The assembly and testing of the AMS RICH is currently being finished and the full AMS detector is expected to be ready by the end of 2008. The RICH detector of AMS-02 is presented. Physics prospects are briefly discussed.Comment: 5 pages. Contribution to the 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como 2007). Presenter: Rui Pereir

    Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues

    Full text link
    State of the art research and treatment of biological tissues require accurate and efficient methods for describing their mechanical properties. Indeed, micromechanics motivated approaches provide a systematic method for elevating relevant data from the microscopic level to the macroscopic one. In this work the mechanical responses of hyperelastic tissues with one and two families of collagen fibers are analyzed by application of a new variational estimate accounting for their histology and the behaviors of their constituents. The resulting, close form expressions, are used to determine the overall response of the wall of a healthy human coronary artery. To demonstrate the accuracy of the proposed method these predictions are compared with corresponding 3-D finite element simulations of a periodic unit cell of the tissue with two families of fibers. Throughout, the analytical predictions for the highly nonlinear and anisotropic tissue are in agreement with the numerical simulations

    The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER spectro-interferometry

    Get PDF
    To trace the accretion and outflow processes around YSOs, diagnostic spectral lines such as the BrG 2.166 micron line are widely used, although due to a lack of spatial resolution, the origin of the line emission is still unclear. Employing the AU-scale spatial resolution which can be achieved with infrared long-baseline interferometry, we aim to distinguish between theoretical models which associate the BrG line emission with mass infall or mass outflow processes. Using the VLTI/AMBER instrument, we spatially and spectrally (R=1500) resolved the inner environment of five Herbig Ae/Be stars (HD163296, HD104237, HD98922, MWC297, V921Sco) in the BrG emission line as well as in the adjacent continuum. All objects (except MWC297) show an increase of visibility within the BrG emission line, indicating that the BrG-emitting region in these objects is more compact than the dust sublimation radius. For HD98922, our quantitative analysis reveals that the line-emitting region is compact enough to be consistent with the magnetospheric accretion scenario. For HD163296, HD104237, MWC297, and V921Sco we identify a stellar wind or a disk wind as the most likely line-emitting mechanism. We search for general trends and find that the size of the BrG-emitting region does not seem to depend on the basic stellar parameters, but correlates with the H-alpha line profile shape. We find evidence for at least two distinct BrG line-formation mechanisms. Stars with a P-Cygni H-alpha line profile and a high mass-accretion rate seem to show particularly compact BrG-emitting regions (R_BrG/R_cont<0.2), while stars with a double-peaked or single-peaked H-alpha-line profile show a significantly more extended BrG-emitting region (0.6<R_BrG/R_cont<1.4), possibly tracing a stellar wind or a disk wind.Comment: 20 pages; 11 figures; Accepted by A&A; a high quality version of the paper can be obtained at http://www.skraus.eu/papers/kraus.HAeBe-BrGsurvey.pd
    corecore