
Eur. Phys. J. C (2013) 73:2375
DOI 10.1140/epjc/s10052-013-2375-0

Special Article - Tools for Experiment and Theory

Phenomenology tools on cloud infrastructures using OpenStack

I. Campos1,a, E. Fernández-del-Castillo1,b, S. Heinemeyer1,c, A. Lopez-Garcia1,d, F.v.d. Pahlen1,2,e,g, G. Borges3,f

1Instituto de Física de Cantabria (CSIC-UC), 39005 Santander, Spain
2Instituto de Biocomputacion y Fisica de Sistemas Complejos—BIFI, University of Zaragoza, 50200 Zaragoza, Spain
3Laboratorio de Instrumentacao e Fisica Experimental de Particulas—LIP, 1000-149 Lisbon, Portugal

Received: 20 December 2012 / Revised: 12 February 2013 / Published online: 3 April 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We present a new environment for computations
in particle physics phenomenology employing recent devel-
opments in cloud computing. On this environment users can
create and manage “virtual” machines on which the phe-
nomenology codes/tools can be deployed easily in an au-
tomated way. We analyze the performance of this environ-
ment based on “virtual” machines versus the utilization of
physical hardware. In this way we provide a qualitative re-
sult for the influence of the host operating system on the
performance of a representative set of applications for phe-
nomenology calculations.

1 Introduction

Particle physics is one of the main driving forces in the de-
velopment of computing and data distribution tools for ad-
vanced users. Nowadays computations in particle physics
phenomenology take place in a diversified software ecosys-
tem. In a broad sense we can speak in terms of two differ-
ent categories: commercial or proprietary software, and soft-
ware developed by the scientific collaborations themselves.

Commercial software is distributed under the terms of
a particular end-user license agreement, which defines how
and under which circumstances the software should be de-
ployed and used. In the field of particle physics phenomenol-
ogy such agreements are undertaken by the scientific insti-
tutions, which afterwards offer this software as a service to

a e-mail: isabel.campos@csic.es
b e-mail: enolfc@ifca.unican.es
c e-mail: Sven.Heinemeyer@cern.ch
d e-mail: aloga@ifca.unican.es
e e-mail: pahlen@ifca.unican.es
f e-mail: goncalo@lip.pt
gMultiDark Fellow.

their researchers. This is the case of the most common soft-
ware packages employed in the area, such as Mathemat-
ica, Matlab, etc.

Scientific collaborations develop also their own software,
often in open source mode under a copy/left license model.
In this way researchers can download this software, use it as
it is, or implement modifications to better solve their particu-
lar analysis following a GNU General Public License style.1

From a technical point of view, most of the codes are de-
veloped on Fortran or C/C++. They become very modular,
because typically they are the result of the work of a collab-
orative team on which each member is in charge of a par-
ticular aspect of the calculation. Software packages evolve
with the necessity of analyzing new data, simulating new
scenarios at present and future colliders. The evolution im-
plies the inclusion of new modules, or functions, which call
and interconnect other modules in the code, and/or make ex-
ternal calls to proprietary software like Mathematica to
perform basic calculations.

The knowledge of the collaboration and the basics of the
physics approach often resides in the core parts of the code,
which remain almost unaltered for years, while the devel-
opment of the software package takes place to include new
features. The core of the software package acts like a sort
of legacy code. The inclusion of new modules to the soft-
ware package needs to be done in such a way that these
legacy parts remain untouched as much as possible, because
its modification would affect all modules already present
in ways sometimes very difficult to disentangle, or to pre-
dict. All this reflects in difficulties when it comes to compile
those codes together with more modern ones. Often there
are issues with compilers which cannot be easily solved and
require a very deep insight in the code to be able to install it.

Some of the codes developed in the framework of sci-
entific collaborations are not open-source, and therefore the

1See http://www.gnu.org/software/gsl/manual/html_node/GNU-
General-Public-License.html for more details.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81896638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:isabel.campos@csic.es
mailto:enolfc@ifca.unican.es
mailto:Sven.Heinemeyer@cern.ch
mailto:aloga@ifca.unican.es
mailto:pahlen@ifca.unican.es
mailto:goncalo@lip.pt
http://www.gnu.org/software/gsl/manual/html_node/GNU-General-Public-License.html
http://www.gnu.org/software/gsl/manual/html_node/GNU-General-Public-License.html


Page 2 of 17 Eur. Phys. J. C (2013) 73:2375

sources are closed to external researchers. This reflects situ-
ations of competitiveness between groups, and the fact that
the knowledge of the group often resides in the developed
code, and therefore needs to be protected due to Intellectual
Property Rights (IPR).

In such situations only the executable binaries are made
externally available by the collaboration, which poses lim-
itations on the architecture and operating systems, library
versions, etc. on which the codes can be executed.

A further level of integration arises when one needs
to deal with complex workflows. This is a most common
scenario in particle physics phenomenology computations:
each step of the calculation requires as input the output of
the previous code in the workflow. Therefore, the installa-
tion of several software packages is unavoidable nowadays
when, for instance, the work concerns simulation, prediction
or analysis of LHC data/phenomenology. The installation of
several of those software packages on the same machine is
often not trivial since one needs to install potentially con-
flicting software on the same machine: different libraries for
each of these software packages, sometimes even different
compiler versions, etc.

The scenario described results in practical difficulties for
researchers, which translate into time consuming efforts for
software deployment, up to impossibility of deployment due
to software or architecture restrictions.

There is a general agreement in the community that set-
ting up a proper computing environment is becoming a seri-
ous overhead for the everyday work of researchers. It is of-
ten the case that they need to deploy locally in their clusters
(or even on their own desktops) all the software packages
required for the calculations, each of them with their par-
ticular idiosyncrasies regarding compiler versions, dynamic
libraries, etc. In this case the intervention of cluster system
managers is also not of much help because a generic clus-
ter cannot accommodate so many options without disturbing
the work of everyone, or generating an unsustainable work
overhead to the system administrator.

The main idea of this work is to exploit the flexibility
of operating system virtualization techniques to overcome
the problems described above. We will demonstrate how
the already available solutions to deploy cloud computing
services [1] can simplify the life of researchers doing phe-
nomenology calculations and compare the performance to
“more traditional” installations.

As will be shown along the article, one obvious solution
where virtualization can help with the problems described
above is the deployment of tailored virtual machines fitting
exactly the requirements of the software to be deployed.
This is specially the case when one deals with deploying
pre-compiled binaries. However, the work described here
aims for a more complete solution going from user authenti-
cation and authorization, to automation of code installation
and performance analysis.

We want to remark that virtualization techniques are al-
ready widely used in most centres involved in the European
Grid Initiative [2] as a fault-tolerant mechanism that simul-
taneously allows to simplify the maintenance and operation
of the main grid services. However, those services remain
static from the end users perspective, with little or no pos-
sibility to change, tune or enhance the execution environ-
ments. This work is motivated by the necessity of exploring
a more efficient use of computing resources also at the level
of the end user. For this purpose, we are exploring ways
in which a Cloud service could be offered as an alterna-
tive to experienced users for which grid infrastructures are
no longer able to satisfy their requirements. A mechanism
for authentication and authorization based on VOMS [3]
has been developed and integrated in our user service pro-
vision model to allow interoperability and a smooth, trans-
parent transition between grid and IAAS cloud infrastruc-
tures.

Code performance using virtualized resources versus per-
formances on non-virtualized hardware is also a subject of
debate. Therefore it is interesting to make an efficiency anal-
ysis for real use cases, including self-developed codes and
commercial software in order to shed some light on the in-
fluence on the performance of the host operating system on
virtualized environments.

The hardware employed for all the tests described in the
article is a server with 16 GB of RAM (well above the
demand of the applications) with four Intel Xeon Proces-
sors of the family E3-1260L, 8 M of Cache and running at
2.40 GHz. In order to have a meaningful evaluation, we have
disabled the power efficiency settings in the BIOS to have
the processors running at maximum constant speed. We have
also disabled the Turbo boost features in the BIOS because
it increases the frequency of the individual cores depending
on the occupancy of the cores, therefore distorting our mea-
sures. For the sake of completeness we have evaluated as
well the influence of enabling the Hyper-threading features
of the individual cores to demonstrate how virtualization and
Hyper-threading together influence the performance of the
codes.

The layout of the article is as follows. In Sect. 2 we de-
scribe the architecture and implementation of the proposed
solutions; Sects. 3 and 4 analyze two different real use cases,
together with the respective performance evaluations. The
first case focuses on the effects of the “virtual” environment
on single process runs, whereas the second case deals with
the potential speed-up via MPI parallelization on virtualized
hardware. The last section contains our conclusions. The
very technical details about authentication and user autho-
rization as well as detailed numbers about our comparisons
can be found in Appendices A and B.



Eur. Phys. J. C (2013) 73:2375 Page 3 of 17

2 Cloud testbed and services

2.1 OpenStack deployment

The deployment of cloud computing services requires the
installation of a middleware on top of the operating system
(Linux in our case), that enables the secure and efficient pro-
vision of virtualized resources in a computing infrastructure.
There are several open-source middleware packages avail-
able to build clouds, with OpenNebula2 and OpenStack3 be-
ing the most used in the scientific data-centers of the Euro-
pean Grid Infrastructure.

After an evaluation of both OpenNebula and OpenStack,
we have chosen the latter as middleware for our deployment
due to its good support for our hardware and its modular
architecture, which allows it to add new services without
disrupting the already existing ones, and to scale easily by
replicating services. OpenStack has a developer community
behind that includes over 180 contributing companies and
over 6,000 individual members and its being used in pro-
duction infrastructures like the public cloud at RackSpace.4

Being written in Python is also an advantage since we can
profit from our expertise in the language to solve problems
and extend the features of the system.

OpenStack is designed as a set of inter-operable services
that provide on-demand resources through public APIs. Our
OpenStack deployment, based on the Essex release (fifth
version of OpenStack, released on April 2012), has the fol-
lowing services, see Fig. 1:

• Keystone (identity service), provides authentication and
access control mechanisms for the rest of components of
OpenStack.

• Nova (compute service) manages virtual machines and
their associated permanent disks (Volumes in OpenStack
terminology). The service provides an API to start and
stop virtual machines at the physical nodes; to assign
them IP addresses for network connectivity; and to create
snapshots of running instances that get saved in the Vol-
ume area. The volumes can also be used as a pluggable
disk space to any running virtual machine.

• Glance (image management service) provides a catalog
and repository for virtual disk images, which are run by
Nova on the physical nodes.

• Horizon, a web-based dashboard that provides a graphical
interface to interact with the services.

OpenStack provides also a object storage service but it’s not
currently used in our deployment.

2See http://www.opennebula.org for details.
3See http://www.openstack.org for details.
4See http://www.rackspace.com/cloud/.

Fig. 1 OpenStack deployment. Keystone provides authentication for
all the services; Nova provides provisioning of virtual machines and as-
sociated storage; Glance manages the virtual machine images used by
Nova; Horizon provides web-based interface built on top of the public
APIs of the services

Our Nova deployment provides virtual machines using
16 servers as described in the introduction running Linux
with Xen [4] 4.0.1 as hypervisor. Volume storage for the vir-
tual machines is provided using two identical servers with a
quad-core Intel Xeon E5606 CPU running at 2.13 GHz with
3 GB of RAM, 4 TB of raw disk and two 1 Gb Ethernet.
Glance runs on a server with similar hardware.

Users of the infrastructure start virtual machines by se-
lecting one image from the Glance catalog and the appro-
priate size (i.e. number of cores, amount of RAM and disk
space) for their computing needs. The available sizes are
designed to fit the physical machine with a maximum of 8
cores and 14 GB of RAM (2 GB of RAM are reserved for
the physical machine Operating System, Xen hypervisor and
OpenStack services) per machine.

The use of an open-source software allows us to adapt
the services to better suit the needs of a scientific comput-
ing environment: we have expanded the authentication of
Keystone to support VOMS and LDAP-based identities as
shown in Appendix A and we have developed an image con-
textualization service with a web interface built on top of
Horizon.

2.2 Image contextualization

In an infrastructure as a service cloud, users become the ad-
ministrators of their machines. Instead of submitting jobs
with their workload to a batch system where the software
is previously configured, they are provided with virtual ma-
chines with no extra help from the resource provider. The in-
stallation and configuration of any additional software must
be performed by the final users. This provides users with
flexibility to create tailored environments for running their
software, but requires them to perform tedious administra-
tive operations that are prone to errors and not of interest for
most users.

This problem has been partially solved by the CernVM
File System [5]—developed to deploy High Energy Physics

http://www.opennebula.org
http://www.openstack.org
http://www.rackspace.com/cloud/


Page 4 of 17 Eur. Phys. J. C (2013) 73:2375

software on distributed computing infrastructures—that pro-
vides a read-only file system for software. However, its
centralized design renders it unpractical for software that
changes frequently or is still being developed; it is also lim-
ited to software distribution, which may not be enough for
having a working environment for the researchers. We have
developed an image contextualization service that frees the
user from downloading, configuring and installing the soft-
ware required for their computations when the virtual ma-
chine is instantiated. This kind of approach does not only
provide software installation, but also allows to customize
every other aspect of the machine configuration, e.g. adding
users, mount file-systems (even the CernVM File System)
and starting services.

The service has three main components: an application
catalog that lists all the available applications; a contextual-
izer that orchestrates the whole process and takes care of ap-
plication dependencies; and a set of installation scripts that
are executed for installation and configuration of each appli-
cation. All of them are stored in a git repository at github.5

The application catalog is a JSON dictionary, where each
application is described with the following fields:

• app_name: human readable application name, for show-
ing it at user interfaces.

• base_url: download URL for the application.
• file: name of the file to be downloaded, relative to the
base_url. Applications may be distributed as binaries

or source files, the installer script handles each particular
case.

• dependencies: list of applications (from the catalog)
that need to be installed before this one.

• installer: name of the contextualization script that
installs the application. The contents of this script depend
on the characteristics of the application: it can install ad-
ditional libraries at the Operating System level, compile
(for applications distributed as source) or simply place bi-
naries in the correct locations (for applications distributed
as binaries).

• versions: dictionary containing the different avail-
able versions of the application. Inside this dictionary,
there is an entry for each version where at least a ver-
sion_name entry specifies a human readable name for
the version. Optionally, it may include any of the fields in
the application description, overriding the default values
for the application.

The only mandatory fields are the installer and
versions. A sample entry is shown below. The applica-
tion name in this case is FormCalc and depends on the
FeynHiggs application.6 There are two different versions,
7.0.2 and 7.4, with the first one overriding the default
value for the base_url:

"FormCalc": {
"app_name": "FormCalc",
"dependencies": [

"FeynHiggs"
],
"installer": "feyntools.sh",
"base_url": "http://www.feynarts.de/formcalc/",
"versions": {

"7.0.2": {
"base_url": "https://devel.ifca.es/~enol/feynapps/",
"app_version": "7.0.2"

},
"7.4": {

"app_version": "7.4"
}

}
}

The contextualizer exploits the user-supplied instance
meta-data that is specified at the time of creation of the vir-
tual machine. This is a free form text that is made available

5See https://github.com/enolfc/feynapps for details.

to the running instance through a fixed URL. In our case,
the contextualizer expects to find a JSON dictionary with the
applications to install on the machine. When the virtual ma-

6See Sect. 3.2 for more details on these codes.

https://github.com/enolfc/feynapps


Eur. Phys. J. C (2013) 73:2375 Page 5 of 17

chine is started, the contextualizer fetches the image meta-
data and for each application listed in the JSON dictionary,
it downloads the application from the specified URL in the
catalog and executes the installation script. The script con-
tents will depend on the application to install. It is executed
as root user and can perform any required modifications in
the system in order to properly setup the application (e.g.
installation of additional libraries, creation of users, starting
services, etc.). In most cases the script will extract the pre-
viously downloaded application archive and compile it with
the virtual machine compiler and libraries. If the application
has any dependencies listed in the catalog, the contextualizer
will install them first, taking care of avoiding duplicated in-
stallations and cyclic dependencies.

The use of a git repository for managing the service pro-
vides complete tracking of the changes in the application
catalog and the installation scripts, and allows researchers
to add new applications or enhance the current installers by
submitting pull requests to the repository. It also simplifies
using always up-to-date versions of the tools and catalog
at the virtual machines without having to recreate the vir-
tual machine images by pulling the latest changes from the
repository at instantiation time.

To ease the use of the service, we have also extended the
OpenStack dashboard to offer the contextualized instances
from a web-based graphical interface. Figure 2 shows this
contextualization panel in horizon. The panel is a modified
version of the instance launch panel, where a new tab in-
cludes the option to select which applications to install. The
tab is created on the fly by reading the application cata-
log from a local copy of the git repository at the horizon
machine—changes in the application catalog are made avail-

able with a periodic pull of the repository. For each selected
application, the panel will include it in the instance meta-
data, which will be used in turn by the contextualizer to in-
voke the scripts.

The panel restricts the images that can be instantiated
to those that are ready to start the contextualization on the
startup, which are identified in glance with the property
feynapps set to true. This avoids errors due to selec-
tion of incorrect images and facilitates the addition of new
images in the future without changing the dashboard.

3 Use case: single processes on virtual machines

The first use case analyzed here concerns the evaluation of
the decay properties of (hypothetical) elementary particles.
The description of the underlying physics will be kept at a
minimum; more details can be found in the respective liter-
ature.

3.1 The physics problem

Nearly all results of high-energy physics results are de-
scribed with highest accuracy by the Standard Model (SM)
of particle physics [6–8]. Within this theory it is possible
to calculate the probabilities of elementary particle reac-
tions. A more complicated theory that tries to go beyond
the SM (to answer some questions the SM cannot prop-
erly address) is Supersymmetry (SUSY), where the most
simple realization is the Minimal Supersymmetric Standard
Model (MSSM) [9–11]. Within this theory all particles of

Fig. 2 Image contextualization
panel in Horizon. For each
available application in the
catalog, the user can select
which version to install



Page 6 of 17 Eur. Phys. J. C (2013) 73:2375

the SM possess “SUSY partner particles”. The physics prob-
lem used in our single-process example concerns the cal-
culation of the disintegration probabilities of one of these
SUSY partner particles, the so-called “heaviest neutralino”,
which is denoted as χ̃0

4 .
In the language of the MSSM the two disintegration

modes investigated here are

χ̃0
4 → χ̃0

1 h1, (1)

χ̃0
4 → χ̃+

1 W−. (2)

Here χ̃0
1 denotes the dark matter particle of the MSSM, h1

is a Higgs boson, W− is a SM particle responsible for nu-
clear decay, and χ̃+

1 is a corresponding SUSY partner. More
details can be found in Ref. [12].

The evaluation is split into two parts. The first part con-
sists of the derivation of analytical formulas that depend on
the free parameters of the model. These parameters are the
masses of the elementary particles as well as various cou-
pling constants between them. These formulas are derived
within Mathematica [13] and are subsequently translated
into Fortran code; the second part consists of the evaluation
of the Fortran code, see below. Numerical values are given to
the free parameters (masses and couplings) and in this way
the disintegration properties for (1), (2) are evaluated. In the
case of (2) this includes also an additional numerical integra-
tion in four-dimensional space-time, which is performed by
the Fortran code. However, no qualitative differences have
been observed, and we will concentrate solely on process
(1) in the following.

3.2 The computer codes and program flow

In the following we give a very brief description of the com-
puter codes involved in our analysis. Details are not relevant
for the comparison of the different implementations. How-
ever, it should be noted that the codes involved are standard
tools in the world of high-energy physics phenomenology
and can be regarded as representative cases, permitting a
valid comparison of their implementation.

The first part of the evaluation is done within Mathe-
matica [13] and consequently will be called “Mathe-
matica part” in the following. It uses several programs de-
veloped for the evaluation of the phenomenology of the SM
and MSSM. The corresponding codes are

• FeynArts [14–17]: this Mathematica based code
constructs the “Feynman diagrams” and “amplitudes” that
describe the particle decay processes (1) and (2). This
code has been established as a standard tool in high-
energy physics over the last two decades [14–17], as can
be seen in the more than 600 use cases documented.7

7See http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A53
9011.

• FormCalc [18]: this Mathematica based code takes
the “amplitudes” constructed by FeynArts and trans-
forms them into analytical formulas in Fortran. For inter-
mediate evaluations, FormCalc also requires the instal-
lation/use of Form [19], which is distributed as part of the
FormCalc package. FormCalc is the standard tool to
further evaluate FeynArts output, with more than 700
use cases documented.8

• LoopTools [18]: this Fortran based code provides four-
dimensional (space-time) integrals that are required for
the evaluation of the decay properties. FeynArts and
FormCalc require LoopTools, i.e. it can be seen as an
integral part of the above described standard tool package.

Not all parameters contained in the analytical formulas
are free, i.e. independent parameters. The structure of the
SM and the MSSM fixes several of the parameters in terms
of the others. At least one additional code is required to eval-
uate the dependent parameters in terms of the others,

• FeynHiggs [20–24]:9 this Fortran based code provides
the predictions of the Higgs particles (such as h1 in
Eq. (1)) in the MSSM. The code has widely been used
for experimental and theoretical MSSM Higgs analyses
at LEP, the Tevatron and the LHC. For the latter it has
been adopted as the standard tool for the MSSM Higgs
predictions by the “LHC Higgs Cross Section Working
Group”.10,11

The program flow of the Mathematica part is as fol-
lows. A steering code in Mathematica calls FeynArts
and initiates the analytical evaluation of the decay properties
of reaction (1) or (2). In the second step the steering code
calls FormCalc for further evaluation. After the analytical
result within Mathematica has been derived, FormCalc
generates a Fortran code that allows for the numerical eval-
uation of the results. The code LoopTools is linked to
this Fortran code. Similarly, also FeynHiggs FeynHiggs
is linked to this Fortran code. The creation of the Fortran
code defines the end of the Mathematica part. The results of
these analytical evaluations for the particle processes under
investigations as well as for many similar cases (which used
the same set of codes) have been verified to give reliable
predictions [25–29].

The second part of the evaluation is based on Fortran and
consequently will be denoted as “Fortran part” in the follow-
ing. It consists of the execution of the Fortran code created
in the Mathematica part. One parameter of the model is

8See http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A47
4106.
9See http://www.feynhiggs.de.
10See https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MSSM.
11See https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A539011
http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A539011
http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A474106
http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A474106
http://www.feynhiggs.de
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MSSM
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections


Eur. Phys. J. C (2013) 73:2375 Page 7 of 17

scanned in a certain interval, whereas all other parameters of
the model are kept fixed. The calculation of the decay prop-
erties are performed for each value of the varied parameter.
To be definite, in our numerical examples we have varied
the complex phase of one of the free parameters, ϕM1 , be-
tween 0◦ and 360◦ in steps of one degree. In each of the 361
steps two parameter configurations are evaluated. Thus, in
total the Fortran part performs 722 evaluations of the decay
properties. As a physics side remark, the results are eval-
uated automatically in an approximate way (called “tree”)
and in a more precise way (called “full”). The results of the
Fortran part are written into an ASCII file. As an example of
this calculation we show in Fig. 3 the results for the decay
(1) for the two parameter configurations called Sg and Sh

(both, “tree” and “full”) as a function of the parameter that

Fig. 3 Example output of the evaluation of the properties of decay (1)
for the two parameter configurations, Sg and Sh, in the approximation
(“tree”) and the more precise way (“full”) as a function of ϕM1 [12].
The decay property Γ is given in its natural units “GeV” (Giga electron
Volt)

is varied, ϕM1 . More details about the physics can be found
in Ref. [12].

3.3 Performance analysis

We have measured the performance of the calculation of de-
cay processes (1) and (2) in a virtualized environment.

Our set-up consisted on instantiating virtual machines
as described in Sect. 2, including the necessary computa-
tional packages among them Mathematica, FeynArts,
FormCalc, FeynHiggs, see above.

Since the nature of the codes is quite different, the
computational time has been measured separately for the
Mathematica part of the computation, and for the For-
tran part of the code which involves basically Floating Point
computing (i.e. without the load on file handling and in-
put/output).

In order to fix our notation we introduce the following
abbreviations:

• SHT,nHT(c) denotes a virtual machine consisting on c

cores and 2 GB of RAM.
• MHT,nHT(c) denotes a virtual machine consisting on c

cores and 4 GB of RAM.
• LHT,nHT(c) denotes a virtual machine consisting on c

cores and 7 GB of RAM.
• XLHT,nHT(c) denotes a virtual or physical machine with c

cores and 14 GB of RAM.

The subscripts HT and nHT refer to Hyper-threading en-
abled or disabled on the virtual machine, respectively. For
instance, MHT(2) denotes a virtual machine with two physi-
cal cores, Hyper-threading enabled (i.e. 4 logical cores) and
4 GB of RAM.

3.3.1 Single process on multicore virtual machines

In our first test we submit a single process to the system (re-
gardless of how many cores are available). We plot in Fig. 4
the time that only the Mathematica part of the code takes,

Fig. 4 Execution time in
seconds of the Mathematica
part. One single process has
been started on the different
virtual machines configurations.
The execution time on the
equivalent physical machine has
been included for comparison
for XLHT (8). The corresponding
detailed numbers can be found
in Tables 1, 2, 3. The scale of the
y-axis has been blown to make
the differences visible to the eye



Page 8 of 17 Eur. Phys. J. C (2013) 73:2375

as a function of the configuration of the machine employed.
Time measurements were taken using the GNU time com-
mand, that displays information about the resources used by
a process as collected by the Operating System.

As we see the Mathematica part is hardly affected
by the size of the machine, once the virtual machine large
enough. The effect observed with SHT(1) is an overhead due
to the extra work that the only core needs to do to handle
both, Mathematica and the guest Operating System. Hyper-
threading is not enough to overcome the penalty in perfor-
mance if only one core is used. However when more than
one core is available one can see a constant performance re-
gardless of the size of the virtual machine, and also regard-
less or whether Hyper-threading is enabled or not.

We have also included in this figure the comparison with
the time it takes on the XLHT(8) machine without virtual-
ization, what is called the “physical machine”. We see the
physical machine is only slightly faster, about a 1 %. The
degradation of performance in this case is therefore min-
imal. A more detailed comparison of virtual and physical
machines can be found below.

Results turn out qualitatively different in the analysis of
the Fortran part of the code, as can be seen in Fig. 5. This
part is dominated by Floating Point calculations and few in-
put/output or file handling, The first difference we see al-
ready at the smaller machines, where we do not observe any-
more overheads due to the size of the virtual machine. The
second difference to the Mathematica part of the code is
that enabling the Hyper-threading does imply a penalty on
performance on the order of a 4 %. This is to be expected on
general grounds due to the performance caveats induced by
Hyper-threading on floating-point dominated applications,
coming from the fact that the cores are not physical but log-
ical, and the FPU unit is the same physical one for the two
logical cores.

As for the comparison with the physical machine without
virtualization, again shown for XLHT(8), we see that virtu-
alization has degraded performance by about a 3 % which

is still a very small impact. Thus the influence of the host
operating system is very small in low load situations.

For both parts of the evaluation, the Mathematica part
and the Fortran part, the percentage of system time em-
ployed during the computations is negligible. For the Math-
ematica dominated part of the computation it starts at 3 % in
SHT(1), to decrease down to a 1.5 % in the rest of series. In
the Fortran part it stays constant at about 0.2 %.

3.3.2 Multiple simultaneous processes
on multicore virtual machines

In this section we investigate the behavior of the perfor-
mance in virtual machines under high load circumstances.
For that we use a machine with 4 physical cores, Hyper-
threading enabled, thus 8 logical cores.

To fix the notation we have adapted the previous defini-
tion as follows (in this test Hyper-threading is always en-
abled, therefore we drop the subscript for simplicity)

• M(c/p) denotes a virtual machine consisting on c cores
and 4 GB of RAM and p concurrent processes running.

• L(c/p) denotes a virtual machine consisting on c cores
and 7 GB of RAM and p concurrent processes running.

• XL(c/p) denotes a virtual or physical machine with c

cores and 14 GB of RAM and p concurrent processes
running.

The test was performed as follows. First we instantiate
a virtual machine with a number of logical cores c. Then
we start from p = 1 up to p = c simultaneous processes
in order to fill all the logical cores available, and measure
how long each of the simultaneous processes takes to com-
plete. Since not all the simultaneous processes take the same
time to complete, we have taken the time of the slowest one
for the plots. Conservatively speaking, this is the real time
that the user would have to wait. The difference between the
maximum and minimum times is not significative for our
analysis (see Tables 4, 5 in Appendix B for more details on
actual times).

Fig. 5 Execution time in
seconds of the Fortran part. One
single process has been started
on the different virtual machines
configurations. The execution
time on the equivalent physical
machine has been included for
comparison for XLHT (8). The
corresponding detailed numbers
can be found in Tables 1–3. The
scale of the y-axis has been
blown to make the differences
visible to the eye



Eur. Phys. J. C (2013) 73:2375 Page 9 of 17

In Fig. 6 we plot the execution time in seconds of the
Mathematica part of the code for the M , L and XL ma-
chines with various number of processes as described above.
In the XL case, for comparison, we also show the execu-
tion time in the physical machine. The first observation is
that the degradation on the performance appears only when
we load the system with more processes than the existing
physical cores (i.e. more than 4). Thus we conclude that
this is not an effect of virtualization, but rather of Hyper-
threading. In the comparison of the virtual and the physical
machines, shown for XL(8/n) in Fig. 6, one can see that the
virtualization does not really imply a penalty on the perfor-
mance.

An interesting effect in this comparison can be observed
when submitting p = 6 or more simultaneous processes.
Against intuition the physical machine execution time is
larger than the virtual machine execution time. This fact can
only be explained if the virtualized operating system man-

ages to handle better the threads than the normal operating
system, which relies only Hyper-threading to distribute the
system load.

To investigate this effect we plot in Fig. 7 the percentage
of system time which the operating systems employed on the
runs. We can see how at XL(8/6) the physical machine does
spend less system time than expected, and indeed, it is not
managing the load of the 6 processes on the 8 logical cores
in the most efficient way. In this case the spread in execution
time between the fastest and the slowest processor is very
large (2572 seconds versus 1899 seconds, where the latter
is faster than the fastest time on the virtual machine, 2359
seconds), see Tables 4, 5 in Appendix B.

To conclude we plot in Fig. 8 the equivalent execution
times in the Fortran dominated part of the calculation. We
see that essentially the same pattern of behavior reproduces:
the load of the machines have a sizable effect on the exe-
cution time only for more than 4 simultaneous processes,

Fig. 6 Execution time in
seconds of the parts of the
calculation involving
Mathematica. The execution
time on the equivalent physical
machine has been included for
comparison. The corresponding
detailed numbers can be found
in Tables 4, 5

Fig. 7 Percentage of system
time employed by the virtual
machine in the Mathematica
part. The same percentage on
the equivalent physical machine
has been included for
comparison in the XL case. The
corresponding detailed numbers
can be found in Tables 4, 5



Page 10 of 17 Eur. Phys. J. C (2013) 73:2375

Fig. 8 Execution time in
seconds of the Fortran part. The
execution time on the equivalent
physical machine has been
included for comparison for the
XL case. The corresponding
detailed numbers can be found
in Tables 4, 5

and the virtual and physical machines show negligible dif-
ferences.

We also measured the memory consumption of the appli-
cations to ensure that swapping had no effects on the appli-
cations’ execution. The Mathematica part memory foot-
print was collected using Mathematica memory man-
agement variable MaxMemoryUsed[]; while the Fortran
part footprint was measured with the Valgrind [30] heap
profiler tool. The maximum memory consumption for the
Mathematica part was 691.1 MB. The Fortran part had a
lower memory consumption with a maximum of 189.1 MB
for the compilation of the resultant codes from FormCalc
and 36.9 MB for the execution. These values are well below
the minimum 1.75 GB of RAM per core (as in the XL(8/n)

case) available in the virtual machines. The possibility of se-
lecting the size of the virtual machine upon startup allows
users to adapt their virtual infrastructure to the particular
memory requirements of their applications.

4 Use case: MPI parallelization

The second use case analyzed here concerns a parameter
scan as a typical application in the field of high-energy
physics phenomenology. It also constitutes a perfect exam-
ple that can be easily parallelized, see below for more de-
tails. For each point in the parameter scan an evaluations of
Higgs boson properties that depend on this parameter choice
is performed. As in the previous section, the description of
the underlying physics will be kept at a minimum, and more
details can be found in the respective literature.

4.1 The physics problem

Also this physics problem is taken from the MSSM. This
model possesses several free parameters. Since they are un-
known, a typical example of an analysis within this model

requires extensive parameter scans, where the predictions
for the LHC phenomenology change with the set of the
scanned parameters.

After the discovery of a Higgs-like particle at the LHC
[31, 32] the Higgs bosons of the MSSM are naturally of
particular interest. The most relevant free parameters of the
MSSM in this respect are

MA and tanβ. (3)

MA denotes the mass of a Higgs particle in the MSSM, β is
a “mixing angle”, see Ref. [33] for further details.

A typical question for a choice of parameters is, whether
this particular combination of parameters is experimentally
allowed or forbidden. A parameter combination, in our case
a combination of MA and tanβ , can result in predictions for
the Higgs particles that are in disagreement with experimen-
tal measurements. Such a parameter combination is called
“experimentally excluded”. In the example we are using,
two experimental results are considered. The first are the re-
sults from the LHC experiment itself. The other set are the
results from a previous experiment, called “LEP” [34, 35].

4.2 The computer codes and program flow

In the following we give a very brief description of the com-
puter codes involved in this analysis. Details are not rele-
vant for the comparison of the various levels of paralleliza-
tion. As in the previous example, it should be noted that
the codes involved constitute standard tools in the world of
high-energy physics phenomenology and can be regarded as
representative cases, permitting a valid comparison of their
implementation.

The main code that performs the check of a Higgs pre-
diction with results from the LHC and LEP is



Eur. Phys. J. C (2013) 73:2375 Page 11 of 17

Fig. 9 Example output of the MSSM scan in the two free parameters
MA and tanβ . The parameter MA is given in its natural units “GeV”
(Giga electron Volt)

• HiggsBounds [36, 37]:12 this Fortran based code takes
input for the model predictions from the user and com-
pares it to the experimental results that are stored in the
form of tables (which form part of the code). Higgs-
Bounds has been established as the standard tool for
the generic application of Higgs exclusion limits over the
last years. It has been linked to many other high-energy
physics standard codes to facilitate their evaluation.13

The predictions for the Higgs phenomenology are ob-
tained with the same code used in the previous section,

• FeynHiggs [20–24]:9 this Fortran based code provides
the predictions of the Higgs particles in the MSSM (for
more details see the previous section).

In our implementation a short steering code (also in For-
tran) contains the initialization of the parameter scan: two
loops over the scan parameters, MA and tanβ , are performed
in the ranges (omitting physical units),

MA = 90 . . .500,

tanβ = 1.1 . . .60,
(4)

with 120 steps in each parameter, resulting in 14400 scan
points. As a physics side remark: the other free parameters
are set to fixed values, in our case according to the mmax

h

scenario described in Ref. [33]. However, details are not rel-
evant for our analysis.

12See http://higgsbounds.hepforge.org/.
13See http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A80
3530.

The steering code calls the code HiggsBounds, hand-
ing over the scan parameters. Internally HiggsBounds
is linked to FeynHiggs, again handing over the scan
parameters. FeynHiggs performs the prediction of the
Higgs phenomenology, and the results are given back to
HiggsBounds. With these parameters the code can now
evaluate whether this parameter combination is allowed
or disallowed by existing experimental results. The corre-
sponding results are stored in a simple ASCII file, where one
file contains the points excluded by the LHC, another file the
points excluded by LEP. As an example, we show in Fig. 9
the results for this scan in the two-dimensional MA–tanβ

plane. Points marked in red, according to the evaluation with
HiggsBounds/FeynHiggs are in disagreement with ex-
perimental results from the LHC, and blue points are in dis-
agreement with experimental results from LEP. White points
are in agreement with the currently available experimental
results.

4.3 MPI parallelization

The parameter scan performed by the code is a typical exam-
ple of an embarrassingly parallel computation, where each
parameter evaluation can be computed independently of the
others, without requiring any communication between them.
This kind of problems can be easily parallelized by dividing
the parameter space into sets and assign them to each avail-
able processor. An OpenMP [38] parallelization was dis-
carded due to the use of non thread-safe libraries in the code,
so we opted for using MPI [39] for developing the parallel
version of the code.

In the parallel version, the steering code in Fortran was
modified to have a single process that initializes the compu-
tation by setting the number of steps (by default 120 steps in
each parameter) and values for the fixed free parameters and
broadcasting all these values to the other processes in the
computation. The parameter space is then divided equally
among all processes, which perform the evaluation and write
their partial results to independent files without any further
communication between processes. Once the computation
finishes, the partial results files are merged into a single file
with all results. A master/worker parallelization with dy-
namic assignment of the parameters to each worker was not
considered because the execution time per evaluation is al-
most constant hence there is no need to balance the work
load between the workers.

4.4 Performance analysis

We have measured the scalability and performance of the
two-dimensional MA–tanβ plane scan described in Sect. 4.2
with 14400 scan points in a virtualized environment. As
in the previous case, we have instantiated the virtual ma-
chines using our contextualization mechanism to install

http://higgsbounds.hepforge.org/
http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A803530
http://inspirehep.net/search?ln=en&p=refersto%3Arecid%3A803530


Page 12 of 17 Eur. Phys. J. C (2013) 73:2375

Fig. 10 Execution time in
seconds of the application for
different number of processes,
both in Virtual and Physical
machines with and without
Hyper-threading

FeynHiggs and HiggsBounds packages. The MPI code
was compiled with Open MPI v1.2.8 [40] as provided in
the Operating System distribution.

These tests were performed on virtual machines that use
the complete hardware, with and without Hyper-threading
enabled (4 or 8 logical cores respectively) and the equivalent
physical machine with the same number of cores and RAM
to compare the performance without virtualization.

We plot in Fig. 10 the execution time for the parame-
ter scan using from 1 (serial version) up to the number of
cores available in each machine. The parallel versions time
include also the final merge of the partial result files.

As we see the performance degradation due to virtualiza-
tion is minimal, below 5 % for all executions, and the differ-
ence in execution time with and without Hyper-threading for
the same number of processes is negligible. The difference
between the virtual and physical machine decreases as the
number of processes grows above 4. This effect, also seen
in the case of multiple processes in Sect. 3, is due to the
use different management the Hyper-threading cores at the
virtualized Operating System.

Since there is no communication overhead in the imple-
mentation, the application scales linearly with the number of
processes given equally powerful CPUs. As seen in the plot,
the scalability of the application is almost linear up to 4 pro-
cesses (the same number of processes as available physical
cores) and it flattens as the Operating System uses the logi-
cal cores provided by the Hyper-threading.

5 Conclusions

We have described a new computing environment for parti-
cle physics phenomenology that can easily be translated to
other branches of science. It is based on “virtual machines”,
using the OpenStack infrastructure. In view of the perfor-
mance, it is necessary to distinguish between two questions:

the benefits that virtualization brings to researchers in terms
on accessibility to computing resources, and the question of
code performance and in general penalties due to the host
operating system.

About the first question the setup of OpenStack and the
development of the self-instantiation mechanism has been
clearly appreciated by the researchers doing this type of
computations. The solution removes many of the barriers de-
scribed in the introduction of this article regarding complex
code installation, machine availability, and automatization
of workflows.

An additional benefit of this set-up is that OpenStack
allows the user taking snapshots of the virtual machine,
which are stored on a repository, and which the owner of
the snapshot can instantiate again at any moment, recov-
ering the session as they saved it. This is a very practical
feature because it allows researchers to “save” the current
status on the virtual machine, and continue working at any
other moment without blocking the hardware in the mean
time.

The second question is performance. We have analyzed
a set of representative codes in the area of particle physics
phenomenology, so that our results can be extrapolated to
similar codes in the area. The results are very positive, as
no excessive penalty due to virtualization can be observed.
At most we observe degradations in performance on the or-
der of 3 % for the parts of the codes dominated by Floating
Point Calculations. For other calculations the degradation
was even less. We have furthermore analyzed the influence
of system time in the virtual machines. We found that the
virtualization has no significant impact on the system time.

Evidently, the possibility of accessing resources in a
more flexible way, the time that researchers spare using
the new environment on software configuration compensates
largely the usage of virtualized resources for the codes under
investigation.



Eur. Phys. J. C (2013) 73:2375 Page 13 of 17

Acknowledgements I.C. and E.F. thank the European Commission
funding via EGI-InSPIRE Grant Contract number RI-261323, EMI
Grant Contract number RI-261611 and FPA-2008–01732. The work
of S.H. was partially supported by CICYT (grant FPA 2010–22163-
C02-01). S.H. and F.v.d.P. were supported in part by the Spanish
MICINN’s Consolider-Ingenio 2010 Programme under grant Multi-
Dark CSD2009-00064 and the project “Computacion Avanzada en ma-
teriales y fenomenos de transporte” Grant number MEC-FIS-2009-
12648-C03-02. G.B. would like to thank to the Portuguese Founda-
tion for Science and Technology under the context of the Ciencia 2008
program jointly funded by the European Social Fund and by MCTES
national funds—through POPH—NSRF-Type 4.2.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix A: User access mechanisms

In this Appendix we describe the user access mechanisms
that we have implemented.

A.1 Authentication

Keystone performs the validation of user’s credentials (user-
name/password) using a configurable back-end, which also
stores all the data and associated meta-data about users,
tenants (groups in OpenStack terminology) and roles asso-
ciated to each user. There are four back-ends provided in
the default OpenStack distribution: Key-Value Store (KVS),
which provides an interface to other stores that can support
primary key lookups (like a hash table); SQL, that stores
data in a persistent database using SQLAlchemy; LDAP,
that uses a LDAP server where users and tenants are stored
in separate subtrees; and PAM, for simple mapping of local
system users to OpenStack. The typical deployment uses the
SQL backend.

Additional authentication mechanisms, e.g. those not
based on username/password credentials, can be imple-
mented using the Pluggable Authentication Handler (PAH)
mechanism. A pluggable authentication handler analyzes
each user request and, if it’s able to handle it, authenticates
the user before the default back-end is executed.

Scientific computing and data centers provide services to
scientific collaborations that often go beyond a single in-
stitution, creating federation of resources where users can
access to the different providers using a single identity.

Grid infrastructures base the authentication and autho-
rization of users on X.509 certificates and Virtual Orga-
nizations (VO). A Virtual Organization comprises a dy-
namic set of individuals (or institutions) defined around a
set of resource-sharing rules and conditions. The current
pan-European grid infrastructure use the Virtual Organiza-
tion Management System (VOMS) for managing the users

and resources within each VO. VOMS provides signed as-
sertions regarding the attributes of a user belonging to a VO,
thus enabling providers to trust these assertions and to de-
fine access rules to their resources based on the attributes.
While a broad community of users are already familiarized
with these authentication mechanisms, the use of X.509 cer-
tificates and proxies is considered to be one of the main bar-
riers for new users and communities.

There are other mechanisms to provide identity federa-
tion across multiple providers that do not require the use
of certificates, but these are poorly supported by the cur-
rent scientific collaborations for accessing computing re-
sources. LDAP can also be used to support federated au-
thentication. LDAP is a well-known solution for authentica-
tion and it is widely used within the scientific data centers.
However, the LDAP back-end included OpenStack enforces
a particular schema that does not fit most of existing deploy-
ments.

We have extended the authentication capabilities of Key-
stone with two new Pluggable Authentication Handlers, one
supporting VOMS and another supporting LDAP authenti-
cation with arbitrary schema for storing user information.
These modules enable the creation of a federated cloud in-
frastructure where users have a single identity across the dif-
ferent resource providers. The VOMS module enables the
re-use of grid identity systems and leverages from existing
experience of the resource providers, while the LDAP mod-
ule enables the creation of simple federation without the in-
convenience of the X.509 certificates for new users and com-
munities.

A.2 VOMS authentication

The VOMS authentication module is implemented as a
Pluggable Authentication Handler in Keystone and executed
as a WSGI [41] of an httpd server enabled to use OpenSSL
and configured to accept proxy certificates (VOMS asser-
tions are included in proxy certificates). Figure 11 shows
the call sequence for the authentication and authorization of
a user using VOMS.

Prior to the authentication, the user creates a proxy by
contacting the VOMS server. This proxy includes the dis-
tinguished name (DN) of the user and a set of attributes re-
lated to the VO (group and roles associated with the user).
The authentication in Keystone is performed by requesting
a token to the server, if successful, Keystone will return a
token which is used for any subsequent calls to the other
OpenStack services. In our implementation, the user au-
thenticates against the httpd server with the VOMS proxy,
and the server, after validation, includes the SSL informa-
tion in the request environment. This information reaches
the VOMS module that will authorize the request check-
ing if the proxy is valid and if the VO is allowed in the
server.



Page 14 of 17 Eur. Phys. J. C (2013) 73:2375

Fig. 11 VOMS authentication
sequence diagram

Fig. 12 LDAP authentication
sequence diagram



Eur. Phys. J. C (2013) 73:2375 Page 15 of 17

Once the proxy is considered valid and allowed, the
module maps VO attributes included in the proxy to a lo-
cal OpenStack tenant using a configuration file. The user
DN in the proxy is used as user name in Keystone. The
mapped local tenant must exist in advance for a user to
be authenticated. The VOMS module can automatically
create the user in Keystone if enabled in configuration.
This allows to easily establish access policies based only
in the membership to a given VO, instead of giving ac-
cess to individuals. Once a user has been granted access,
the administrator can manage it as with any other user
in the Keystone back-end (i.e. disable/enable, grant/revoke
roles, etc.).

A.3 LDAP authentication

The LDAP authentication modules takes profit from the au-
thentication features of the apache httpd server. In this case
the authentication phase is delegated to the server which
can authenticate users against LDAP with arbitrary schemas.

This way, we use a reliable and tested code that is used in
production systems and is actively maintained by the apache
developers. Moreover, we avoid the introduction of security
risks by minimizing the code the deals with the authentica-
tion. Once the server has authenticated the request, it will
pass the user name through the environment of the WSGI
module.

The LDAP module uses a configuration file that specifies
using regular expressions which users are allowed and to
what tenants they should be mapped in the system. If the
user is authorized, the user can be created automatically in
Keystone as in the VOMS case. Finally, the token is returned
to the user. Figure 12 shows the sequence diagram for this
process.

Appendix B: Detailed computation times

In this appendix we give detailed numbers on the execution
times of the analysis in Sect. 3. The notations are the same
as in that section.

Table 1 Computation time (sec) of virtual machines with hyper-threading (HT), divided in Mathematica part, Fortran part, and total time.
Computation time is divided in real, user, sys, denoting respectively real time, processor time for computation, and system time

Machine
(cores)

Math Fortran Total

real user sys real user sys real user sys

SHT (1) 1661.06 1601.87 48.38 5500.06 5466.54 11.07 7161.24 7068.43 59.47

MHT (2) 1617.06 1613.56 28.37 5480.03 5465.36 12.20 7097.20 7078.99 40.58

LHT (4) 1617.05 1615.18 29.38 5475.64 5461.08 12.28 7092.80 7076.33 41.68

XLHT (8) 1617.19 1615.86 31.00 5475.95 5461.20 12.48 7093.25 7077.12 43.50

Table 2 Computation time
(sec) of virtual machines
without hyper-threading (nHT)

Machine
(cores)

Math Fortran

real user sys real user sys

MnHT (2) 1616.78 1613.12 28.20 5281.21 5266.46 11.69

LnHT (4) 1618.9 1613.9 33.8 5278.9 5264.0 12.6

Table 3 Computation time
(sec) of physical machine R

with hyper-threading (HT)

Machine
(cores)

Math Fortran

real user sys real user sys

RHT (8) 1605.1 1584.8 13.9 5306.9 5290.8 6.6

Table 4 Computation time (sec) of virtual machine with multiple equal processes

Machine
(cores/proc.)

Math Fortran

real user sys real user sys

MHT (2/1) 1617.1 1613.6 28.4 5480.0 5465.4 12.2

MHT (2/2) max 1708.9 1647.2 52.6 5500.7 5472.7 12.2

MHT (2/2) min 1713.4 1650.6 53.4 5493.6 5469.7 12.2



Page 16 of 17 Eur. Phys. J. C (2013) 73:2375

Table 4 (Continued)

Machine
(cores/proc.)

Math Fortran

real user sys real user sys

LHT (4/1) 1617.1 1615.2 29.4 5475.6 5461.1 12.3

LHT (4/2) max 1678.6 1653.2 39.5 5488.0 5473.3 12.4

LHT (4/2) min 1672.4 1656.4 36.1 5491.0 5476.0 12.6

LHT (4/4) max 1771.1 1709.0 54.5 5602.4 5580.7 12.3

LHT (4/4) min 1775.3 1711.8 53.8 5511.9 5489.8 12.7

XLHT (8/1) 1617.2 1615.9 31.0 5476.0 5461.2 12.5

XLHT (8/2) max 1678.4 1671.2 34.4 5492.4 5477.1 13.1

XLHT (8/2) min 1676.8 1668.6 35.3 5493.4 5478.2 13.0

XLHT (8/4) max 1807.0 1790.9 39.7 5566.1 5549.4 13.9

XLHT (8/4) min 1809.6 1786.3 45.1 5521.6 5504.8 14.0

XLHT (8/6) max 2385.7 2333.8 62.8 7706.1 7684.6 17.2

XLHT (8/6) min 2358.8 2306.8 63.0 7558.8 7535.5 17.2

XLHT (8/8) max 2835.5 2741.8 78.2 9375.0 9344.9 18.7

XLHT (8/8) min 2818.9 2728.8 77.5 9329.9 9295.4 18.6

Table 5 Computation time
(sec) of physical machine R

with HT with multiple equal
processes

Machine (cores/proc.) Math Fortran

real user sys real user sys

RHT (8/1) 1605.1 1584.8 13.9 5306.9 5290.8 6.6

RHT (8/2) max 1683.7 1642.9 15.7 5345.4 5329.3 6.5

RHT (8/2) min 1686.9 1646.2 17.1 5311.7 5295.5 6.6

RHT (8/4) max 1763.4 1696.1 20.6 5401.6 5384.9 6.9

RHT (8/4) min 1765.6 1700.4 19.9 5317.6 5301.0 6.9

RHT (8/6) max 2572.4 2449.5 29.4 8063.2 8039.8 8.5

RHT (8/6) min 1899.1 1804.9 23.4 7060.7 7039.5 8.0

RHT (8/8) max 2882.7 2707.6 48.8 9320.7 9288.5 10.0

RHT (8/8) min 2862.3 2685.2 47.7 9291.8 9261.2 9.6

References

1. P. Mell, T. Grance, NIST special publication 800-145 (2011)
2. S.J. Newhouse, S. Brewer, in Progress in Cultural Heritage

Preservation. Lecture Notes in Computing Science, vol. 7616
(2012), p. 849

3. R. Alfieri et al., Future Gener. Comput. Syst. 21(4), 549 (2005)
4. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, A. Warfield, Oper. Syst. Rev. 37(5), 164
(2003)

5. J. Blomer, P. Buncic, R. Meuse, The CernVM File System (2013)
6. L. Glashow, Nucl. Phys. 22, 579 (1961)
7. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)
8. A. Salam, J.C. Ward, Phys. Lett. 13, 168 (1964)
9. H. Nilles, Phys. Rep. 110, 1 (1984)

10. H. Haber, G. Kane, Phys. Rep. 117, 75 (1985)
11. R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988)
12. A. Bharucha, S. Heinemeyer, F. von der Pahlen, C. Schappacher,

Phys. Rev. D 86, 075023 (2012). arXiv:1208.4106 [hep-ph]
13. S. Wolfram, The Mathematica Book (Wolfram Media/Cambridge

University Press, Champaign/Cambridge, 1996)

14. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60,
165 (1990)

15. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/
0012260

16. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54
(2002). arXiv:hep-ph/0105349

17. The program, the user’s guide and the MSSM model files are avail-
able via http://www.feynarts.de

18. T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153
(1999). arXiv:hep-ph/9807565

19. J. Vermaseren, Symbolic Manipulation with FORM (Computer Al-
gebra Netherlands, Amsterdam, 1991)

20. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun.
124, 76 (2000). arXiv:hep-ph/9812320

21. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343
(1999). arXiv:hep-ph/9812472

22. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein,
Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

23. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G.
Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/
0611326

http://arxiv.org/abs/arXiv:1208.4106
http://arxiv.org/abs/arXiv:hep-ph/0012260
http://arxiv.org/abs/arXiv:hep-ph/0012260
http://arxiv.org/abs/arXiv:hep-ph/0105349
http://www.feynarts.de
http://arxiv.org/abs/arXiv:hep-ph/9807565
http://arxiv.org/abs/arXiv:hep-ph/9812320
http://arxiv.org/abs/arXiv:hep-ph/9812472
http://arxiv.org/abs/arXiv:hep-ph/0212020
http://arxiv.org/abs/arXiv:hep-ph/0611326
http://arxiv.org/abs/arXiv:hep-ph/0611326


Eur. Phys. J. C (2013) 73:2375 Page 17 of 17

24. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Com-
put. Phys. Commun. 180, 1426 (2009)

25. S. Heinemeyer, H. Rzehak, C. Schappacher, Phys. Rev. D 82,
075010 (2010). arXiv:1007.0689 [hep-ph]

26. T. Fritzsche, S. Heinemeyer, H. Rzehak, C. Schappacher, Phys.
Rev. D 82, 075010 (2010). arXiv:1111.7289 [hep-ph]

27. S. Heinemeyer, F. von der Pahlen, C. Schappacher, Eur. Phys. J. C
72, 1892 (2012). arXiv:1112.0760 [hep-ph]

28. S. Heinemeyer, C. Schappacher, Eur. Phys. J. C 72, 1905 (2012).
arXiv:1112.2830 [hep-ph]

29. S. Heinemeyer, C. Schappacher, Eur. Phys. J. C 72, 2136 (2012).
arXiv:1204.4001 [hep-ph]

30. N. Nethercote, J. Seward, in Proceedings of ACM SIGPLAN 2007
Conference on Programming Language Design and Implementa-
tion, (2007)

31. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012).
arXiv:1207.7214 [hep-ex]

32. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30
(2012). arXiv:1207.7235 [hep-ex]

33. M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J.
C 26, 601 (2003). arXiv:hep-ph/0202167

34. LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:
hep-ex/0306033

35. LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:
hep-ex/0602042

36. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams,
Comput. Phys. Commun. 181, 138 (2010). arXiv:0811.4169 [hep-
ph]

37. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams,
Comput. Phys. Commun. 182, 2605 (2011). arXiv:1102.1898
[hep-ph]

38. L. Dagum, R. Menon, Comput. Sci. Eng. 5(1), 46 (1998)
39. Message Passing Interface Forum, MPI-v2.2 (2009)
40. E. Gabriel et al., in Proceedings 11th European PVM/MPI Users’

Group Meeting (2004)
41. P. Eby, PEP-3333 (2010)

http://arxiv.org/abs/arXiv:1007.0689
http://arxiv.org/abs/arXiv:1111.7289
http://arxiv.org/abs/arXiv:1112.0760
http://arxiv.org/abs/arXiv:1112.2830
http://arxiv.org/abs/arXiv:1204.4001
http://arxiv.org/abs/arXiv:1207.7214
http://arxiv.org/abs/arXiv:1207.7235
http://arxiv.org/abs/arXiv:hep-ph/0202167
http://arxiv.org/abs/arXiv:hep-ex/0306033
http://arxiv.org/abs/arXiv:hep-ex/0306033
http://arxiv.org/abs/arXiv:hep-ex/0602042
http://arxiv.org/abs/arXiv:hep-ex/0602042
http://arxiv.org/abs/arXiv:0811.4169
http://arxiv.org/abs/arXiv:1102.1898

	Phenomenology tools on cloud infrastructures using OpenStack
	Introduction
	Cloud testbed and services
	OpenStack deployment
	Image contextualization

	Use case: single processes on virtual machines
	The physics problem
	The computer codes and program flow
	Performance analysis
	Single process on multicore virtual machines
	Multiple simultaneous processes on multicore virtual machines


	Use case: MPI parallelization
	The physics problem
	The computer codes and program flow
	MPI parallelization
	Performance analysis

	Conclusions
	Acknowledgements
	Appendix A: User access mechanisms
	Authentication
	VOMS authentication
	LDAP authentication

	Appendix B: Detailed computation times
	References


