5,069 research outputs found

    Space Charge Modelling in Solid Dielectrics under High Electric Field Based on Double Charge Injection Model

    No full text
    Present study aims to develop a clear insight on factors that influence space charge dynamics in solid dielectrics through a numerical simulation. The model used for the simulation is proposed by Alison and Hill [1] which describes charge dynamics as a result of bipolar transport with single level trapping. In this model, a constant mobility and no detrapping have been assumed. The simulation results show that carrier mobility, trapping coefficient and Schottky barrier have a significant effect on the space charge dynamics. Many features of space charge profiles observed by experiments have been revealed in despite of over simplistic model. More importantly, the simulation allows us to study the role of each individual parameter in the formation of space charge in solid dielectrics, so that the experimental results can be better understood

    Algebraic Rainich conditions for the tensor V

    Full text link
    Algebraic conditions on the Ricci tensor in the Rainich-Misner-Wheeler unified field theory are known as the Rainich conditions. Penrose and more recently Bergqvist and Lankinen made an analogy from the Ricci tensor to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}, a certain fourth rank tensor quadratic in the Weyl curvature, which also satisfies algebraic Rainich-like conditions. However, we found that not only does the tensor BαβμνB_{\alpha\beta\mu\nu} fulfill these conditions, but so also does our recently proposed tensor VαβμνV_{\alpha\beta\mu\nu}, which has many of the desirable properties of BαβμνB_{\alpha\beta\mu\nu}. For the quasilocal small sphere limit restriction, we found that there are only two fourth rank tensors BαβμνB_{\alpha\beta\mu\nu} and VαβμνV_{\alpha\beta\mu\nu} which form a basis for good energy expressions. Both of them have the completely trace free and causal properties, these two form necessary and sufficient conditions. Surprisingly either completely traceless or causal is enough to fulfill the algebraic Rainich conditions. Furthermore, relaxing the quasilocal restriction and considering the general fourth rank tensor, we found two remarkable results: (i) without any symmetry requirement, the algebraic Rainich conditions only require totally trace free; (ii) with a symmetry requirement, we recovered the same result as in the quasilocal small sphere limit.Comment: 17 page

    Balanced metrics on Cartan and Cartan-Hartogs domains

    Get PDF
    This paper consists of two results dealing with balanced metrics (in S. Donaldson terminology) on nonconpact complex manifolds. In the first one we describe all balanced metrics on Cartan domains. In the second one we show that the only Cartan-Hartogs domain which admits a balanced metric is the complex hyperbolic space. By combining these results with those obtained in [13] (Kaehler-Einstein submanifolds of the infinite dimensional projective space, to appear in Mathematische Annalen) we also provide the first example of complete, Kaehler-Einstein and projectively induced metric g such that αg\alpha g is not balanced for all α>0\alpha >0.Comment: 11 page

    Gravitational energy from a combination of a tetrad expression and Einstein's pseudotensor

    Full text link
    The energy-momentum for a gravitating system can be considered by the tetard teleparalle gauge current in orthonormal frames. Whereas the Einstein pseudotensor used holonomic frames. Tetrad expression itself gives a better result for gravitational energy than Einstein's. Inspired by an idea of Deser, we found a gravitational energy expression which enjoys the positive energy property by combining the tetrad expression and the Einstein pseudotensor, i.e., the connection coefficient has a form appropriate to a suitable intermediate between orthonormal and holonomic frames.Comment: 5 page

    Limit Analysis of Strain Softening Frames Allowing for Geometric Nonlinearity

    Get PDF
    This paper extends classical limit analysis to account for strain softening and 2nd-order geometric nonlinearity simultaneously. The formulation is an instance of the challenging class of socalled (nonconvex) mathematical programs with equilibrium constraints (MPECs). A penalty algorithm is proposed to solve the MPEC. A practical frame example is provided to illustrate the approach

    A Cenozoic-style scenario for the end-Ordovician glaciation

    Get PDF
    The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ13C excursion occurs during final deglaciation, not at the glacial apex

    The use of the moss, Calymperes Delessertii besch., as a bioindicator to airborne heavy metals

    Get PDF
    A detailed study on the accumulation of aerial heavy metals by the moss, Calymperes delessertii Besch. was conducted. Heavy metals studied were Zn, Cd, Ni, Fe, Mn, Pb and Cu. The suitability of the moss as a bioindicatoT to these aerial metals was also discussed

    Videoconferencing and telementoring about dementia care: evaluation of a pilot model for sharing scarce old age psychiatry resources

    Get PDF
    While videoconferencing, telementoring, and peer support have been shown to enhance services in some instances, there has been no research investigating the use of these technologies in supporting professionals managing clients with dementia. The objective of this research was to evaluate expansion of an old age psychiatry consultation service and pilot test a model to improve medical supervision and clinical governance for staff within regional and remote areas using remote information technology. The design was a mixed methods (qualitative and quantitative) evaluation using before, mid-point and post-implementation semi-structured interviews and questionnaires to examine orientation, acceptance, and impact underpinned by theoretical approaches to evaluation. Education evaluations used a Likert style response template. Participants were 18 dementia service staff, including staff from linked services and old age psychiatrists. Qualitative interviews addressed the pilot implementation including: expectations, experiences, strategies for improving the pilot, and perceived impact on work practice and professional development opportunities. There was high satisfaction with the program. The case conference process contributed to perceived improved outcomes for clients, family, and staff. Clinicians perceived improvement in family carer and staff carer stress and their confidence in managing clients with behavioral and psychological symptoms of dementia (BPSD). Thematic analysis indicated that the pilot enhanced professional development, decreased travel time, and improved team cohesion. Given the increasing aging population in regional, rural, and remote areas, initiatives using videoconferencing and telementoring will help to develop a confident and skilled workforce. This pilot program was found to be acceptable and feasible. Potential benefits for clients and family carers should be examined in future resesarch

    New positive small vacuum region gravitational energy expressions

    Full text link
    We construct an infinite number of new holonomic quasi-local gravitational energy-momentum density pseudotensors with good limits asymptotically and in small regions, both materially and in vacuum. For small vacuum regions they are all a positive multiple of the Bel-Robinson tensor and consequently have positive energy.Comment: 4 page
    corecore