This paper consists of two results dealing with balanced metrics (in S.
Donaldson terminology) on nonconpact complex manifolds. In the first one we
describe all balanced metrics on Cartan domains. In the second one we show that
the only Cartan-Hartogs domain which admits a balanced metric is the complex
hyperbolic space. By combining these results with those obtained in [13]
(Kaehler-Einstein submanifolds of the infinite dimensional projective space, to
appear in Mathematische Annalen) we also provide the first example of complete,
Kaehler-Einstein and projectively induced metric g such that αg is not
balanced for all α>0.Comment: 11 page