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Abstract: This paper extends classical limit analysis to account for strain softening and 2nd-order 
geometric nonlinearity simultaneously. The formulation is an instance of the challenging class of so-
called (nonconvex) mathematical programs with equilibrium constraints (MPECs). A penalty algorithm 
is proposed to solve the MPEC. A practical frame example is provided to illustrate the approach. 
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1 Introduction 
Classical limit analysis is a powerful and simple method for assessing the maximum load capacity of 
perfectly plastic structures, without the need to follow the whole time history of loading. However, the 
pair of dual bound theorems underpinning this classical approach is only strictly applicable to 
structures that satisfy some rather restrictive requirements, the main ones being perfect plasticity (e.g. 
no hardening or softening, normality and convexity of yield surface) and geometric linearity. 

The present paper presents an extension of classical limit analysis to encompass a wider class of 
practical frame structures. In particular, both local softening and 2nd-order geometric nonlinearity are 
allowed for. The novel approach proposed still requires only a single step analysis, but, moreover, it 
can not only provide an upper bound to the maximum load but it will furnish the corresponding 
deformations as well. 

The organization of this paper is as follows. In Section 2, the classical holonomic (path-independent) 
elastoplastic analysis formulation is reviewed. This forms the basis for formulating, in Section 3, the 
extended limit analysis problem as an MPEC. Section 4 then proposes an algorithm to solve the 
MPEC. The key idea is to reformulate the nonconvex MPEC as a standard nonlinear programming 
(NLP) problem using a penalty function. In Section 5, a realistic softening frame example is provided 
to illustrate application of the present approach and to highlight the influences of both softening and 
geometric nonlinearities. Finally, some conclusions are drawn in Section 6. 

2 Holonomic Elastoplastic Analysis 
It is first assumed, as is usual, that the structure has been discretized as an aggregate of finite 
elements. In the present case, the material behavior is conveniently established at an element level 
rather than at a material level, since the class of finite elements expressed in intrinsic, natural (in 
Prager�s generalized sense) variables is adopted [1]. This implies that the scalar product of 
generalized stress and strain vectors represents virtual work in the element concerned and is invariant 
with respect to rigid body motion. Thus, for a generic self equilibrated 2-D frame element i in Figure 1, 
the generalized stress vector si ∈ ℜ3 contains the three (independent) two end moments ),( 32

ii ss  and 

one axial force )( 1
is . The corresponding generali zed strain vector qi ∈ ℜ3 then consists of the 

corresponding end rotations ),( 32
ii qq  and one axial deformation )( 1

iq . 

A simplified geometrically nonlinear approach, based on the well-known 2nd-order geometric theory 
[2], is adopted. It is thus assumed that displacements from the undeformed state are geometrically 
small [3]. For a generic frame element i (Figure 1), this 2nd-order geometric nonlinearity can be 
conveniently described by introducing an additional transverse force i

f�  as well as its co rresponding 

displacement i
f� . Clearly, the force i

f�  and the displacement i
f�  are sufficient to describe the 

configuration change of a member. 

For elastoplastic members, material nonlinearity is included through the traditional concept of the 
plastic hinge model. More specifically, the formation of such hinges is confined only to member ends 
with the material between these ends assumed to be elasticity. 
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Figure 1. Generic 2-D frame element i (a) stresses, (b) strains.  

Holonomy, in the spirit of the deformation theory of plasticity, implies that elastic unloading from a 
plastic state does not occur and, hence, implies that any unloading from the active yield branch is 
reversible. For practical structures subjected to a monotonic loading regime, this assumption, as 
evidenced by recent work [4], leads to accurate predictions of actual structural responses. It is also 
assumed that associated elastoplasticity holds.  

In terms of well-known notation and description [1], the governing holonomic formulation can now be 
written as follows: 

,0 df
T
f

T � ff�CsC +=+  (1) 
,0uCq =  (2) 

,uC� ff =  (3) 
,peq +=  (4) 

,)( 0 eSSs g+=  (5) 
,fff �S� =  (6) 

,Nzp =  (7) 
.0,, =≥≥++−= zw0z0rHzsNw TT    (8) 

Vector and matrix quantities (indicated in bold) represent the unassembled contributions of 
corresponding elemental entities as concatenated vectors and block-diagonal matrices, respectively. 

For a structure with n generic elements, d degrees of freedom, m natural generalized (stresses or 
strains) and y yield functions, (1) describes the equilibrium between nodal forces �f + fd ∈ ℜd (� is a 
scalar load multiplier, f is prescribed and fd is fixed) and the stress components (namely natural 
stresses s ∈ ℜm and additional auxiliary forces πf ∈ ℜn) through the linear compatibility matrix 
C0 ∈ ℜm×d and the associated auxiliary compatibility matrix Cf ∈ ℜn×d. Linear compatibility of strains 
q ∈ ℜm with nodal displacements u ∈ ℜd as in (2) then holds, provided that a linear relation between 
auxiliary displacements δf ∈ ℜn and nodal displacements u is introduced as in (3). 

The holonomic constitutive law is established in (4)-(8). In particular, the additivity of elastic e ∈ ℜm 
and plastic p ∈ ℜm strains is expressed by (4). The elastic constitution consists of two components, 
namely the relation between s and e in (5) as well as the relation between πf and δ f in (6), where 
S0 ∈ ℜm×m is the conventional linear stiffness matrix, Sg ∈ ℜm×m the geometric stiffness matrix and 
Sf ∈ ℜn×n the auxiliary stiffness matrix. Plastic strains p are defined by an associated flow rule in (7) 
through matrix N ∈ ℜm×y (outward normals to yield surface) and plastic multipliers z ∈ ℜy. A piecewise 
linear yield function vector w ∈ ℜy accommodates, through H ∈ ℜy×y, a wide class of hardening [1] or 
softening [4] laws. Yield limits are defined by vector r ∈ ℜy. Finally, a complementarity relationship in 
(8), between the sign-constrained total quantities w and z, allows for the reversibility of plastic 
multipliers z. 
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To clarify the assumed 2nd-order geometry approach, consider again generic frame element i in 
Figure 1. From this figure, it is straightforward to obtain specific expressions of some key vectors and 
matrices, used in (1), (3), (5) and (6) for each element i, as fo llows: 
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Clearly, these quantities are written solely in terms of an unknown variable is1 . The geometrically 
linear case is simply recovered by eliminating all nonlinear terms (e.g. Sg = 0 and Sf = 0). 

When such members as heavily loaded columns are simultaneously subject to significant axial and 
flexural forces, the effects of axial forces must be included in the softening yield condition. Without 
undue loss of generality, the following hexagonal yield locus for the �start� hinge �a� of an element i, 
typical of an I-steel section under combined bending and axial forces, is adopted. 
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Figure 2. Softening law (a) interaction between is1  and is2  (b) softening behavior of yield plane j. 

Positive and negative flexural/axial properties are assumed to be identical, with a reduction of the pure 
bending capacity occurring when the axial force reaches a fraction rb (normally set to 0.15) of the pure 
axial capacity. The yield functions (8) for this isotropic softening model are described as follows [4]: 
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where ;/~
12 uu ssn =  ;/)1(2 cru prsh −−=  ;tan1 �r� b+=  cjcj ppa /=  for all };6,,1{ K∈j  τj (j = 1,4) = 1 

and τj (j = 2,3,5,6) = τ; s1u and s2u are respectively axial and flexural yield capacities; rr is the residual 
stress state; pc (e.g. pc = pc1) is a single arbitrarily assumed c ritical plastic strain while pcj (j = 1,…,6) 
are the actual critical plastic strain values. 

Relation set (1)-(8) is a mixed complementarity problem (MCP). This holonomic analysis is carried out 
by using an existing nonholonomic code [4], albeit modified to allow all plastic multipliers to decrease 
in a reversible fashion. For the 2nd-order geometry case, an iterative scheme, in view of nonlinear 



 

 

terms present (namely Sg in (5) and Sf in (6)), is required; nonlinear quantities are linearized at each 
iteration by using previously found solutions as data. The holonomic implementation uses the MCP 
solver PATH [5] within the GAMS/MATLAB mathematical programming modeling environment; where 
GAMS is an acronym for General Algebraic Modeling System [6]. 

3 Extended Limit Analysis Problem as an MPEC 
Our proposed extended limit analysis is conceptually simple in that it aims to maximize the load factor 
(assumed to be a variable) under the same relation set (1)-(8) that would apply to a holonomic 
analysis under load control. Thus, this can be cast as the following opti mization problem in variables 
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   to subject

  Maximize

 (11) 

Optimization problem (11) is an MPEC [7], for which the equilibrium constraints are complementarity 
constraints. Problems of this type cannot yet be solved with certainty. There are various reasons why 
this is so. In the first instance, as is well-known from the integer programming literature, disjunctive 
constraints such as complementarity conditions in (11) are very difficult to handle. It is often stated that 
such constraints constitute a combinatorial �curse� for MPECs. Moreover, the feasible region of an 
MPEC, with its lack of convexity, smoothness and sometimes even connectivity, often leads to severe 
numerical instability in any algorithm. In spite of the various numerical difficulties, the authors have 
had considerable success in solving similar MPECs (e.g. [8]). The general strategy adopted is to 
reformulate MPEC (11) as a standard NLP problem by suitably �treating� the complementarity 
conditions. 

As discussed earlier for the holonomic analysis case, an iterative scheme is still required to solve (11) 
since the two matrices Sg and Sf involve unknown stresses s. Our algorithm therefore involves a series 
of iterative MPEC solves as follows: 

1. At i = 0, initialize si = 0. 

2. Set i = i + 1. Assume that si = si-1, and calculate new Sg and Sf. Then, formulate and solve 
MPEC (11). Obtain the new estimates for �i, si, π f,i, ui and zi. 

3. Check convergence: if max(abs(si − si-1)) ≤ 10-6, then terminate. Else, repeat Step (2). 

4 Penalty Algorithm to Solve the MPEC 
The penalty algorithm is well-known in the mathematical programming literature [7]. This has also 
been successfully used in various mechanical problems involving MPECs, e.g. in a frictional contact 
problem [8]. The basic idea is to transfer the complementarity term to the objective function and 
penalize it . In particular, this involves adding the term −µwTz to the objective function, where µ is a 
penalty parameter. As a result, MPEC (11) is converted to the following NLP problem: 
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A negative penalization is necessary in view of a maximization requirement. Clearly, with increasing 
values of µ, the complementarity term is driven towards zero. The algorithm simply increases the 



 

 

penalty parameter µ at each NLP iterate, each represented by (12), until a preset complementarity 
tolerance (e.g. wTz ≤ 10-6) has been reached. The attraction of this method is that each penalty 
subproblem is a standard NLP problem that can be solved by any one of readily available and 
powerful NLP codes, such as CONOPT [9]. 

Typical starting values for µ are within the range 0.1-1, with an update of µ = 10µ after each NLP 
solve. A good specification of initial variables (e.g. w = r) often helps the NLP solves. 

5 Illustrative Example 
The realistic nine storey portal frame, as shown in Figure 3a, is considered. It is subjected to 
increasing vertical point loads of 6á (kN) and increasing lateral loads (kN) governed by load factor á; v 
denotes the corresponding top storey sway displacement (m). The structure was discretized into 126 
elements, 93 nodes, 261 degrees of freedom and 213 critical sections (namely at columns ends, beam 
ends and mid-span). 

Three holonomic analysis cases were carried out: Case a (perfectly plastic, combined stresses and 
small deformation), Case b (softening, combined stresses and small deformation), and Case c 
(softening, combined stresses and 2nd-order geometry). This was the followed by a corresponding 
series of extended limit analyses that aimed to capture the maximum load in each of the three 
indicated cases. 

Steel sections with E = 2×108 kNm−2 were adopted: 400WC328 for a ll columns (s2u = 1988 kNm, 
s1u = 11704 kN) and 460UB82.1 for a ll beams (s2u = 552 kNm, s1u = 3150 kN). For the softening 
Cases b and c (in Figure 2 with rr = 0.7, rb = 0.15, tanγ = 1/0.85 and aj = 1 for all j), the parameters 
employed were: for columns h = −18418.78 kNm; for beams h = −4852.04 kNm at beam ends, 
h = −2426.02 kNm at mid-span. 

The overall holonomic á-v responses for Cases a to c  are depicted in Figure 3b. Also shown (as •) are 
the results of the extended limit analyses. In particular, the maximum loads computed were: 
á = 91.754 with v = 0.75 m for Case a, á = 79.709 with v = 0.330 m for Case b, and á = 69.616 with 
v = 0.287 m for Case c. 

 
Figure 3. Frame example (a) nine storey portal frame, (b) holonomic á-v responses, (c)-(e) hinge 
dispositions at peak loads for Cases a to c, respectively (• denotes hinge on softening branch). 
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As is clearly evident, the accuracy of these results can be confirmed through comparison with the 
actual holonomic step-by-step responses. Hinge dispositions at peak loads of all Cases a to c are 
shown respectively in Figures 3c-3e. In all runs, the penalty algorithm had no difficulty in providing the 
limit loads. For the 2nd-order geometry Case c, the total 17 MPEC iterates were required to converge 
to the solution. Some details of hinge activations are provided in the following. 

The holonomic analyses for Cases a and b indicated that the first and second hinges formed at some 
beam sections when á = 55.359 and 55.374, respectively. In Case a, a column section started to yield 
at á = 69.981, and the analysis was terminated at á = 91.754 with v = 0.75 m. In Case b, the first 
(column) hinge formed at á = 69.351, and the maximum load was attained at á = 79.709, 
approximately 15% less than that of the perfectly plastic Case a. In the 2nd-order geometry Case c, 
the overall load behavior indicated a weaker structure than that of the small deformation Case b. Not 
only was a smaller maximum load attained for Case c, but the post peak behavior also showed a 
sharper drop. Beams and columns initiated their first hinge at á = 51.949 and 65.167, respectively. 
The maximum load was reached at á = 69.616, some 15% less than that of Case b. These load 
reductions, of course, indicate the importance of accounting for both softening and geometric 
nonlinearity. 

6 Conclusions 
A novel approach for extending classical limit analysis for a wide class of  the elastoplastic structures 
has been presented. The analysis can account for local softening behavior and 2nd-order geometric 
nonlinearity. For the frames considered, the yield condition is governed by combined flexural and axial 
forces. At variance with a classical limit analysis, the proposed approach is able to provide 
simultaneously the maximum load and corresponding deformations in a single step. 

The formulation takes the form as a nonconvex optimization problem referred to as an MPEC. In spite 
of the underlying well-known difficulties in solving such problems, a penalty NLP-based algorithm has 
been successfully used to solve our MPEC. The efficiency and robustness of the approach has been 
tested using a large number of examples, one of which is presented in this paper.  

The particular example given concerns a realistic steel frame example. The results highlight the fact 
that it is important to consider the effects of both softening (under combined stresses) and geometric 
nonlinearity in the correct estimation of the maximum load capacity of such structures. Ignoring any of 
these effects can lead to unsafe load predictions. 
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