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BALANCED METRICS ON CARTAN AND

CARTAN–HARTOGS DOMAINS

ANDREA LOI, MICHELA ZEDDA

Abstract. This paper consists of two results dealing with balanced

metrics (in S. Donaldson terminology) on noncompact complex mani-

folds. In the first one we describe all balanced metrics on Cartan do-

mains. In the second one we show that the only Cartan–Hartogs do-

main which admits a balanced metric is the complex hyperbolic space.

By combining these results with those obtained in [13] we also provide

the first example of complete, Kähler-Einstein and projectively induced

metric g such that αg is not balanced for all α > 0.

1. Introduction

Let Ω ⊂ Cd be a Cartan domain, i.e. an irreducible bounded symmetric

domain, of complex dimension d and genus γ. For all positive real numbers

µ consider the family of Cartan-Hartogs domains

MΩ(µ) =
{

(z, w) ∈ Ω× C, |w|2 < Nµ
Ω(z, z)

}
, (1)

where NΩ(z, z) is the generic norm of Ω, i.e.

NΩ(z, z) = (V (Ω)K(z, z))
− 1
γ , (2)

where V (Ω) is the total volume of Ω with respect to the Euclidean measure

of the ambient complex Euclidean space and K(z, z) is its Bergman kernel.

The domain Ω is called the base of the Cartan–Hartogs domain MΩ(µ)

(one also says that MΩ(µ) is based on Ω). Consider on MΩ(µ) the metric

g(µ) whose associated Kähler form ω(µ) can be described by the (globally

defined) Kähler potential centered at the origin

Φ(z, w) = − log(Nµ
Ω(z, z)− |w|2). (3)

These domains have been considered by several authors (see e.g. [15] and

references therein). In [13] the authors of the present paper study when
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2 A. LOI, M. ZEDDA

(MΩ(µ), α g(µ)), for a positive constant α, admits a holomorphic and isomet-

ric (from now on Kähler) immersion f into the infinite dimensional complex

projective space CP∞, i.e. f∗gFS = α g(µ), where gFS denotes the Fubini–

Study metric on CP∞ (when such a Kähler immersion exists, we say also

that the metric is projectively induced). Recall that given homogeneous

coordinates [Z0, . . . , Zj , . . . ] on CP∞, gFS is the Kähler metric whose asso-

ciated Kähler form ωFS can be described in the open set U0 = {Z0 6= 0} by

ωFS = i
2∂∂̄ΦFS , where ΦFS = log(1 +

∑∞
j=1 |zj |2) for zj =

Zj
Z0

, j = 1, . . . ,

affine coordinates on U0. The main results obtained in [13] can be sum-

marized in the following theorem (see also next section for a more detailed

description of the Wallach set W (Ω) and for the definition of the integer a

appearing in (c)).

Theorem LZ Let Ω ⊂ Cd be a Cartan domain of rank r, genus γ and

dimension d and let gB be its Bergman metric. Then the following results

hold true:

(a) (Ω, βgB), β > 0, admits a equivariant Kähler immersion into CP∞

if and only if βγ belongs to W (Ω) \ {0};
(b) the metric αg(µ), α > 0, on the Cartan–Hartogs domain MΩ(µ) is

projectively induced if and only if (α+m)µγ gB is projectively induced

for every integer m ≥ 0;

(c) Let µ0 = γ/(d + 1) and Ω 6= CHd. Then the metric αg(µ0) on

MΩ(µ0) is Kähler-Einstein, complete, nonhomogeneous and projec-

tively induced for all positive real number α ≥ (r−1)(d+1)a
2γ .

In this paper we study balanced metrics (in S. Donaldson’s terminology)

on Cartan and Cartan–Hartogs domains. The main results are the following

two theorems. In the first one we describe all balanced metrics on Cartan’s

domains, while the second one can be viewed as a characterization of the

complex hyperbolic space among Cartan–Hartogs domains, in terms of bal-

anced metrics (cfr. Example 1 below).

Theorem 1. Let Ω be a Cartan domain of genus γ equipped with its Bergman

metric gB. The metric βgB, β > 0, is balanced if and only if β > γ−1
γ .

Theorem 2. Let MΩ(µ) be a Cartan-Hartogs domain based on the Cartan

domain Ω ⊂ Cd. The metric αg(µ) on MΩ(µ) is balanced if and only if

α > d+1 and MΩ(µ) is holomorphically isometric to the complex hyperbolic

space CHd+1, namely Ω = CHd and µ = 1.

By combining these results with (c) in Theorem LZ we also obtain the

first example of complete, Kähler-Einstein and projectively induced metric g

such that αg is not balanced for α varying in a continuous subset of the real

numbers. This is expressed by the following corollary.
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Corollary 3. Let Ω ⊂ Cd be a Cartan domain of genus γ equipped with its

Bergman metric gB. Let µ0 = γ/(d + 1) and Ω 6= CHd. Then the metric

αg(µ0) on MΩ(µ0) is complete, Kähler-Einstein projectively induced and not

balanced for all α ≥ (r−1)(d+1)a
2γ .

The paper consists in three other sections. In Section 2 we recall the

definition of balanced metrics. In Section 3 we describe all balanced metrics

on Cartan domains and prove Theorem 1. Finally Section 4 is dedicated to

the proof of Theorem 2.

The authors woud like to thank the anonymous referee for several useful

remarks and comments which helped them to improve the exposition.

2. Balanced metrics

Let M be a n-dimensional complex manifold endowed with a Kähler met-

ric g and let ω be the Kähler form associated to g, i.e. ω(·, ·) = g(J ·, ·). As-

sume that the metric g can be described by a strictly plurisubharmonic real

valued function Φ : M → R, called a Kähler potential for g, i.e. ω = i
2∂∂̄Φ.

Let HΦ be the weighted Hilbert space of square integrable holomorphic

functions on (M, g), with weight e−Φ, namely

HΦ =

{
f ∈ Hol(M) |

∫
M
e−Φ|f |2ω

n

n!
<∞

}
, (4)

where ωn

n! = det( ∂2Φ
∂zα∂z̄β

)
ωn0
n! is the volume form associated to ω and ω0 =

i
2

∑n
j=1 dzj ∧ dz̄j is the standard Kähler form on Cn. If HΦ 6= {0} we can

pick an orthonormal basis {fj} and define its reproducing kernel by

KΦ(z, z) =
N∑
j=0

|fj(z)|2,

where N + 1 denotes the complex dimension of HΦ 6= {0}. Consider the

function

εg(z) = e−Φ(z)KΦ(z, z). (5)

As suggested by the notation it is not difficult to verify that εg depends only

on the metric g and not on the choice of the Kähler potential Φ (which is

defined up to an addition with the real part of a holomorphic function on

M) or on the orthonormal basis chosen.

Definition. The metric g is balanced if the function εg is a positive constant.

A balanced metric g on M can be viewed as a particular projectively

induced Kähler metric for which the Kähler immersion f : M → CPN , N ≤
∞, x 7→ [s0(x), . . . , sj(x), . . . ], is given by the orthonormal basis {fj} of the

Hilbert space HΦ. Indeed the map f is well-defined since εg is a positive
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constant and hence for all x ∈ M there exists ϕ ∈ HΦ such that ϕ(x) 6= 0.

Moreover,

f∗ωFS =
i

2
∂∂̄ log

∞∑
j=0

|fj(z)|2

=
i

2
∂∂̄ logKΦ(z, z)

=
i

2
∂∂̄ log ε g +

i

2
∂∂̄ log eΦ

=
i

2
∂∂̄ log εg + ω.

Hence if g is balanced the map f is isometric.

In the literature the function εg was first introduced under the name of

η-function by J. Rawnsley in [16], later renamed as θ-function in [3]. The

map f is called in [3] the coherent states map. It plays a fundamental role

in the geometric quantization and quantization by deformation of a Kähler

manifold. It also related to the Tian-Yau-Zelditch asymptotic expansion

(see [9], [11], [12] and references therein).

Example 1. Notice that a projectively induced metric is not always bal-

anced. For example, in [4] E. Calabi shows that the complex hyperbolic

space (CHd, α ghyp), endowed with a positive multiple of the hyperbolic

metric ghyp, is projectively induced for all α > 0. (Here CHd = {z ∈
Cd | |z|2 < 1} and the Kähler form ωhyp associated to ghyp is given by

ωhyp = − i
2∂∂̄ log(1 − |z|2)). Although, it is well-known that the weighted

Hilbert space of square integrable holomorphic functions on (CHd, α ghyp),

i.e.

HαΦhyp =

{
ϕ ∈ Hol(CHd),

∫
CHd

(
1− |z|2

)α−(d+1) |ϕ|2ω
d
0

d!
<∞

}
,

is equal to {0} for all α ≤ d. Similar considerations can be done for all

Cartan domains (see Remark 6 below).

Remark 4. The definition of balanced metrics was originally given by S.

Donaldson [6] in the case of a compact polarized Kähler manifold (M, g)

and generalized in [2] (see also [5], [7], [10]) to the noncompact case. Here

we give only the definition for those Kähler metrics which admit a globally

defined potential such as the Cartan and Cartan–Hartogs domains treated

in this paper.

3. Balanced metrics on Cartan domains

Let (Ω, βgB), β > 0, denote a Cartan domain, i.e. an irreducible bounded

symmetric domain of Cd endowed with a positive multiple of its Bergman

metric gB. Recall that gB is the Kähler metric on Ω whose associated Kähler
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form ωB is given by ωB = i
2∂∂̄ logK(z, z), where K(z, z) is the reproducing

kernel for the Hilbert space

H =

{
ϕ ∈ Hol(Ω),

∫
Ω
|ϕ|2 ωd0

d!
<∞

}
,

where ω0 = i
2

∑d
j=1 dzj ∧ dz̄j is the standard Kähler form of Cd. A bounded

symmetric domain (Ω, αgB) is uniquely determined by a triple of integers

(r, a, b), where r represents the rank of Ω and a and b are positive integers.

The genus γ of Ω is defined by γ = (r− 1)a+ b+ 2 and the dimension d can

be written as

d = r +
r(r − 1)

2
a+ rb. (6)

The table below summarizes the numerical invariants and the dimension of

Ω according to its type (for a more detailed description of this invariants,

which is not necessary in our approach, see e.g. [1]).

Table 1. Bounded symmetric domains, invariants and dimension.

Type r a b γ dimension

Ω1[m,n] n
0 (n = 1)

m− n n+m nm (n ≤ m)
2 (n > 1)

Ω2[n] [n/2] 4
0 (n even)

2n− 2 n(n− 1)/2 (n ≥ 5)
2 (n odd)

Ω3[n] n 1 0 n+ 1 n(n+ 1)/2 (n ≥ 2)

Ω4[n] 2 n− 2 0 n n (n ≥ 5)

ΩV [16] 2 6 4 12 16

ΩV I [27] 3 8 0 18 27

We give now the definition of the Wallach set of a Cartan domain Ω,

referring the reader to [1], [8] and [17] for more details and results. The

Wallach set, denoted by W (Ω), consists of all η ∈ C such that there exists

a Hilbert space H η
γ

whose reproducing kernel is K
η
γ . This is equivalent to

the requirement that K
η
γ is positive definite, i.e. for all n-tuples of points

x1, . . . , xn belonging to Ω the n × n matrix (K(xα, xβ)
η
γ ), is positive semi-

definite. It turns out (cfr. [1, Cor. 4.4, p. 27] and references therein) that

W (Ω) consists only of real numbers and depends on two of the domain’s

invariants, a and r. More precisely we have

W (Ω) =
{

0,
a

2
, 2
a

2
, . . . , (r − 1)

a

2

}
∪
(

(r − 1)
a

2
, ∞

)
. (7)

The setWdis =
{

0, a2 , 2a2 , . . . , (r − 1)a2
}

and the intervalWc =
(
(r − 1)a2 , ∞

)
are called respectively the discrete and continuous part of the Wallach set

of the domain Ω.
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Remark 5. If Ω has rank r = 1, namely Ω is the complex hyperbolic space

CHd, then gB = (d+ 1)ghyp. In this case (and only in this case) Wdis = {0}
and Wc = (0,∞) (cfr. Example 1).

We can now prove Theorem 1.

Proof of Theorem 1. Let d denote the complex dimension of Ω. It follows

by standard results on bounded symmetric domains (see e.g. [8]) that the

Hilbert space

Hβ =

{
ϕ ∈ Hol(Ω) |

∫
Ω

1

Kβ
|ϕ|2

ωdB
d!

<∞
}
,

does not reduce to the zero dimensional space iff β > γ−1
γ . Observe that the

notation of Hβ is consistent with that of H η
γ

given above.

Hence, in order to prove that β gB is balanced for β > γ−1
γ , it remains to

show that for β > γ−1
γ the map hβ : Ω→ CP∞, x 7→ [. . . , hjβ(x), . . . ], where

{hjβ} is an orthonormal basis of Hβ, is a well-defined map of Ω into CP∞

and it is Kähler i.e.

h∗βgFS = βgB.

To prove that hβ is well-defined one needs to verify that for all x ∈ Ω there

exists ϕ ∈ Hβ such that ϕ(x) 6= 0. Assume, by contradiction, that there

exists x0 ∈ Ω such that ϕ(x0) = 0 for all ϕ ∈ Hβ. Write Ω = G/K, where

G is a subgroup of Aut(Ω) ∩ Isom(Ω) which acts transitively on Ω. Then

for all g ∈ G, ϕ ◦ g is an element of Hβ which, by assumption, vanishes on

x0. Thus 0 = ϕ ◦ g(x0) = ϕ(gx0) and since this holds true for all g ∈ G,

hβ is the zero function. Hence Hβ = {0}, which is in contrast with the fact

that Hβ 6= {0} for β > γ−1
γ . In order to prove that hβ is Kähler notice

that the function
∑∞
j=0 |h

j
β |

2

Kβ is invariant by the group G and hence constant.

Therefore

h∗βωFS =
i

2
∂∂̄ log

∞∑
j=0

|hjβ|
2 = βωB +

i

2
∂∂̄ log

∑∞
j=0 |h

j
β|

2

Kβ
= βωB,

and we are done. �

Remark 6. By Theorem 1 the subset of the positive real numbers β for

which β gB is balanced, i.e.
(
γ−1
γ ,∞

)
, is a proper subset of the contin-

uous part of the set of β for which β gB is projectively induced, namely(
(r − 1) a

2γ ,∞
)

(see the definition (7) of the Wallach set W (Ω) and (a) of

Theorem LZ ). Thus for every Cartan domain there exists an infinite inter-

val of positive real numbers β such that βgB is projectively induced but not

balanced.
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Remark 7. Observe that it follows by Theorem 1 that, for all β > γ−1
γ , we

have for some constant ξ∫
Ω
N
γ(β−1)
Ω hjβ h̄

k
β ω

d
0 = ξ δj,k, (8)

where NΩ is the generic norm of Ω defined in (2) and hβ is the Kähler

map defined in the proof of Theorem 1. In particular, the integral (8) is

convergent and does not depend on j, k.

4. Balanced metrics on Cartan–Hartogs domains

In order to prove Theorem 2 we need the following two lemmata. The

first one gives an explicit description of the Kähler immersions of a d + 1-

dimensional Cartan–Hartogs domain (MΩ(µ), αg(µ)) into CP∞ while the

second one describes a necessary condition for the metric αg(µ) to be bal-

anced.

Lemma 8. If f : MΩ(µ)→ CP∞ is a holomorphic map such that f∗ωFS =

αω(µ) then up to unitary transformation of CP∞ it is given by

f =

[
1, s, hµα

γ
, . . . ,

√
(m+ α− 1)!

(α− 1)!m!
hµ(α+m)

γ

wm, . . .

]
, (9)

where s = (s1, . . . , sm, . . . ) with

sm =

√
(m+ α− 1)!

(α− 1)!m!
wm,

and hk = (h1
k, . . . , h

j
k, . . . ) denotes the sequence of holomorphic maps on Ω

such that the immersion h̃k = (1, h1
k, . . . , h

j
k, . . . ), h̃k : Ω → CP∞, satisfies

h̃∗kωFS = kωB, i.e.

1 +

∞∑
j=1

|hjk|
2 =

1

Nγ k
. (10)

Proof. Since the immersion is isometric, by (3) we have f∗ΦFS = −α log(Nµ
Ω(z, z)−

|w|2), which is equivalent to

1

(Nµ − |w|2)α
=
∞∑
j=0

|fj |2,

for f = [f0, . . . , fj , . . . ]. If we consider the power expansion around the

origin of the left hand side with respect to w, w̄, we get

∞∑
k=1

[
∂2k

∂wk∂w̄k
1

(Nµ − |w|2)α

]
0

|w|2k

k!2
=

∞∑
k=1

[
∂2k

∂wk∂w̄k
1

(1− |w|2)α

]
0

|w|2k

k!2

=

( ∞∑
k=0

|w|2
)α
− 1.
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The power expansion with respect to z and z̄ reads

∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
1

(Nµ − |w|2)α

]
0

zmj z̄mk

mj !mk!
=
∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
1

Nµα

]
0

zmj z̄mk

mj !mk!

=
∞∑
j=1

|hjµα
γ
|2,

where the last equality holds since by (10)
∑∞

j=1 h
j
µα
γ

is the power ex-

pansion of 1
Nµα − 1. Here we are using Calabi’s multi index notation,

namely we arrange every d-tuple of nonnegative integers as the sequence

mj = (mj,1, . . . ,mj,d) with nondecreasing order, that is m0 = (0, . . . , 0),

|mj | ≤ |mj+1|, with |mj | =
∑d

α=1mj,α. Further zmj denotes the monomial

in d variables
∏d
α=1 z

mj,α
α and mj ! = mj,1! · · ·mj,d!.

Finally, the power expansion with respect to z, z̄, w, w̄ reads

∞∑
m=1

∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
∂2m

∂wm∂w̄m
1

(Nµ − |w|2)α

]
0

zmj z̄mkwmw̄m

mj !mk!m!2

=
∞∑
m=1

∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
(m+ α− 1)!

(α− 1)!m!Nµ(α+m)

]
0

zmj z̄mk

mj !mk!
|w|2m

=
∞∑
m=1

∞∑
j=1

(m+ α− 1)!

(α− 1)!m!
|w|2m|hjµ(α+m)

γ

|2,

where we are using (10) again. It follows by the previous power series expan-

sions, that the map f given by (9) is a Kähler immersion of (MΩ(µ), αg(µ))

into CP∞. By Calabi’s rigidity Theorem (cfr. [4]) all other Kähler immer-

sions are given by U ◦ f , where U is a unitary transformation of CP∞. �

Lemma 9. If α g(µ) is balanced then α > d+ 1 and αµ > γ − 1.

Proof. Assume that α g(µ) is balanced. Then it is projectively induced and

by Lemma 8, up to unitary transformation of CP∞, the Kähler immersion

f : MΩ(µ) → CP∞, f = [f0, . . . , fj , . . . ], is given by (9). By Section 2

{fj}j=0,1,... is an orthonormal basis for the weighted Hilbert space

HαΦ =

{
ϕ ∈ Hol(MΩ(µ)) |

∫
M(µ)

(
Nµ

Ω − |w|
2
)α |ϕ|2ω(µ)d+1

(d+ 1)!
<∞

}
, (11)

where up to the multiplication with a positive constant

ω(µ)d+1

(d+ 1)!
=

N
µ(d+1)−γ
Ω

(Nµ
Ω − |w|2)d+2

ωd+1
0

(d+ 1)!
,
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as it follows by a long but straightforward computation of the determinant

of the metric g(µ). Thus, in particular we have

∫
MΩ(µ)

(Nµ
Ω − |w|

2)αfj f̄k
ω(µ)d+1

(d+ 1)!
=∫

MΩ(µ)
(Nµ

Ω − |w|
2)α−(d+2)N

µ(d+1)−γ
Ω fj f̄k

ωd+1
0

(d+ 1)!
= λ δjk,

for some constant λ independent from j and k. It follows by (9) that the

integral ∫
MΩ(µ)

(Nµ
Ω − |w|

2)α−(d+2)N
µ(d+1)−γ
Ω |hjµα

γ
|2 ωd+1

0

(d+ 1)!
,

is convergent. Passing to polar coordinates one gets

π

(d+ 1)!

∫
Ω
N
µ(d+1)−γ
Ω |hjµα

γ
|2
∫ Nµ

Ω

0
(Nµ

Ω − ρ)α−(d+2)dρωd0 .

The integral ∫ Nµ
Ω

0
(Nµ

Ω − ρ)α−(d+2)dρ,

is convergent iff α−(d+2) > −1, i.e. iff α > d+1. Further, when α > d+1,

going on with computations gives

π

(d+ 1)!

1

(α− (d+ 2) + 1)

∫
Ω
Nµα−γ

Ω |hjµα
γ
|2ωd0 .

By Remark 7 this last integral converges and does not depends on j iff

αµ > γ − 1, and we are done. �

We are now in the position of proving Theorem 2.

Proof of Theorem 2. Since by Theorem 1 the hyperbolic metric αghyp is bal-

anced iff α > d + 1, the sufficient condition is verified (recall that for the

hyperbolic metric we have µ = 1 and γ = d + 2). For the necessary part,

assume that α g(µ) is balanced. By Lemma 9 we can assume α > d+ 1 and

αµ > γ − 1. Following the same approach as in Lemma 9, this gives that

the integral

∫
MΩ(µ)

(Nµ
Ω − |w|

2)α−(d+2)Nµ(d+1)−γfj f̄k
ωd+1

0

(d+ 1)!
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is zero for j 6= k and does not depend on j otherwise. By (9) this implies

that the following integral∫
MΩ(µ)

(Nµ
Ω − |w|

2)α−(d+2)Nµ(d+1)−γ (m+ α− 1)!

(α− 1)!m!
|hjµ(α+m)

γ

|2|w|2m ωd+1
0

(d+ 1)!
=

π

(d+ 1)!

(m+ α− 1)!

(α− 1)!m!

∫
Ω
N
µ(d+1)−γ
Ω |hjµ(α+m)

γ

|2
∫ Nµ

Ω

0
(Nµ

Ω − ρ)α−(d+2)ρmωd0 =

πm!

(d+ 1)!

(m+ α− 1)!

(α− 1)!m!

1

(α− (d+ 2) + 1) · · · (α− (d+ 2) +m)
·

·
∫

Ω
N
µ(d+1)−γ
Ω |hjµ(α+m)

γ

|2
∫ Nµ

Ω

0
(Nµ

Ω − ρ)α−(d+2)+mωd0 =

π

(d+ 1)!

(m+ α− 1)!

(α− 1)!

1

(α− (d+ 2) + 1) · · · (α− (d+ 2) +m+ 1)
·

·
∫

Ω
N
µ(α+m)−γ
Ω |hjµ(α+m)

γ

|2ωd0 ,

(12)

does not depend on the choice of m and j. Since αµ > γ − 1 implies
µ(α+m)

γ > γ−1
γ , Remark 7 yields that

∫
ΩN

k−γ
Ω |hjk

γ

|2ωd0 is constant for all j

and thus (12) does not depend on j (observe also that for j = 0 one obtains

the term sm of s in Lemma 8 and for j = m = 0 we recover the first term

of f , f0 = 1). Thus if α g(µ) is balanced the quantity

π

(d+ 1)!

(m+ α− 1)!

(α− 1)!

1

(α− (d+ 2) + 1) · · · (α− (d+ 2) +m)

∫
Ω
N
µ(α+m)−γ
Ω ωd0

does not depend on m. By [14, Prop. 2.1, p. 358] this is equivalent to ask

that the quantity

(m+ α− 1)!

(α− d− 1) · · · (α− d+m− 2)

F (µ(α+m)− γ)

F (0)

does not depend on m, where

F (s)

F (0)
=

r∏
j=1

Γ
(
s+ 1 + (j−1)a

2

)
Γ
(
b+ 2 + (r+j−2)a

2

)
Γ
(

1 + (j−1)a
2

)
Γ
(
s+ b+ 2 + (r+j−2)a

2

) ,
for Γ the usual Gamma function and (a, b, r) the domain’s invariants de-

scribed in Table 1. Deleting the terms which do not depend on m and

changing the orders of terms in the argument of the Gamma functions, we

get

(α+m− 1) · · · (α+m− d)

r∏
j=1

Γ
(
µ(α+m)− γ + 1 + (j−1)a

2

)
Γ
(
µ(α+m)− γ + b+ 2 + (r+j−2)a

2

) =
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(α+m− 1) · · · (α+m− d)

r∏
j=1

Γ
(
µ(α+m)− γ + 1 + (j−1)a

2

)
Γ
(
µ(α+m)− γ + b+ 2 + (2r−j−1)a

2

) =

(α+m−1) · · · (α+m−d)

r∏
j=1

Γ
(
µ(α+m)− γ + 1− a

2 + ja
2

)
Γ
([
µ(α+m)− γ + 1− a

2 + ja
2

]
+ b+ 1 + ra− ja

) .
Since the quantity b + 1 + ra − ja is a positive integer, by the well-known

property Γ(z + 1) = zΓ(z) we get

(α+m− 1) · . . . · (α+m− d)∏r
j=1

∏b+a(r−j)
k=0

(
µ(α+m) + 1− γ − a

2 + ja
2 + k

) . (13)

It is easy to verify by using (6) that numerator and denominator regarded as

polynomial in the variable m have the same degree d. If the above quantity

does not depend on m, then it must be equal to its limit as m goes to infinity,

i.e to 1/µd. Thus by (13) we get

µd(α+m−1)·. . .·(α+m−d) =
r∏
j=1

b+a(r−j)∏
k=0

(
µ(α+m) + 1− γ − a

2
+
ja

2
+ k

)
,

from which it follows µ = 1 (comparing the terms not depending on α+m).

Setting µ = 1 and comparing the terms of degree d− 1 in m one gets

d∑
k=1

(α− k) =

r∑
j=1

b+a(r−j)∑
k=0

(
α+ 1− γ − a

2
+
ja

2
+ k

)
,

that is,

d

(
α− d+ 1

2

)
= r

(
α+ 1 +

a

2
(r − 1)− γ +

b

2

)(
b+ 1 +

a

2
(r − 1)

)
,

which by definition of γ and by (6) leads to the following second order

equation in r:

ar2 + 2

(
b+ 1− 3

2
a

)
r + 2(a− b− 1) = 0.

This equation is satisfied by r = 1, i.e. Ω = CHd. On the other hand, if r 6= 1

we can assume a 6= 0 and the second solution is given by r = 2(a− b− 1)/a,

condition which is not satisfied by any Cartan domain (see Table 1), and

this concludes the proof of the theorem.

�
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