406 research outputs found

    Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Get PDF
    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE

    The development of a superconducting undulator for the ILC positron source.

    Get PDF
    The ILC positron source relies upon a ~200 m long superconducting helical undulator in order to generate the huge flux of gamma photons required. The period is only 11.5 mm but the field strength is ~1 T. The UK is building and testing a full scale 4 m long ILC cryomodule at the moment. It will be completed in 2008 and the results used to demonstrate the feasibility of the full (200 m long) syste

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Electron-muon ranger: performance in the MICE muon beam

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c

    Simulation study on the measured difference in fuel consumption between real-world driving and ECE-15 of a hybrid electric vehicle

    Get PDF
    Hybrid electric vehicles (HEVs) are sensitive to the driving conditions under which they are used, leading to greater fuel consumption than quoted by the manufacturer, and therefore higher CO emissions. Real-world driving can be very different from the legislative drive cycles as speeds are greater, there are faster changes in speed, and these changes occur at a greater frequency. This study aims to investigate where the differences between real-world driving and the ECE-15 urban drive cycle occur through development of a real-world drive cycle and via a system simulation study. A second generation 2004 Toyota Prius equipped with a GPS (Global Positioning System) data logging system was used to collect data while in use by Loughborough University Security over a period of 9 months. These data were used for the development of a drive cycle, Loughborough University Urban Drive Cycle (LUUDC), representing urban driving around the university campus and local urban area. The same vehicle was tested on a chassis dynamometer on the LUUDC against the ECE-15 cycle and others. Fuel consumption was measured and CO emissions were calculated and compared. A model based on Autonomie vehicle simulation software was used to simulate and analyse the differences. The test and modelling results showed higher fuel consumption on LUUDC than ECE-15. The reasons for this will be discussed in this paper

    Electron-muon ranger: performance in the MICE muon beam

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c

    A whole-cell biosensor for the detection of gold

    Get PDF
    Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric β-galactosidase and an electrochemical assay. Measurements of the β-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 µM (equivalent to 20 to 1000 ng g⁻¹ or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 µM) and a detection limit of 2 ppb (0.01 µM).Carla M. Zammit, Davide Quaranta, Shane Gibson, Anita J. Zaitouna, Christine Ta, Joël Brugger, Rebecca Y. Lai, Gregor Grass, Frank Reit

    Analytical tools for monitoring changes in physical and chemical properties of chromatography resin upon reuse

    Get PDF
    Protein A resins are often reused for multiple cycles to improve process economy during mAb purification. Significant reduction in binding capacity and product recovery are typically observed due to the presence of unwanted materials (foulants) deposited on the resin upon reuse. In this paper, we have used a wide spectrum of qualitative and quantitative analytical tools (particle size analysis, HPLC, fluorescence, SEM, MS, and FTIR) to compare the strengths and shortcomings of different analytical tools in terms of their capability to detect the fouling of the resin and relate it to chromatographic cycle performance. While each tool offers an insight into this complex phenomena, fluorescence is the only one that can be used for real‐time monitoring of resin fouling. A correlation could be established between fluorescence intensity and the process performance attributes (like yield or binding capacity) impacted upon resin reuse. This demonstration of the application of fluorescence for real‐time monitoring correlated empirically with process performance attributes and the results support its use as a PAT tool as part of a process control strategy. While the focus of this paper is on fouling of protein A chromatography resin, the approach and strategy are pertinent to other modes of chromatography as well

    Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    Get PDF
    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals
    corecore