662 research outputs found

    Sympatho-renal axis in chronic disease

    Get PDF
    Essential hypertension, insulin resistance, heart failure, congestion, diuretic resistance, and functional renal disease are all characterized by excessive central sympathetic drive. The contribution of the kidney’s somatic afferent nerves, as an underlying cause of elevated central sympathetic drive, and the consequences of excessive efferent sympathetic signals to the kidney itself, as well as other organs, identify the renal sympathetic nerves as a uniquely logical therapeutic target for diseases linked by excessive central sympathetic drive. Clinical studies of renal denervation in patients with resistant hypertension using an endovascular radiofrequency ablation methodology have exposed the sympathetic link between these conditions. Renal denervation could be expected to simultaneously affect blood pressure, insulin resistance, sleep disorders, congestion in heart failure, cardiorenal syndrome and diuretic resistance. The striking epidemiologic evidence for coexistence of these disorders suggests common causal pathways. Chronic activation of the sympathetic nervous system has been associated with components of the metabolic syndrome, such as blood pressure elevation, obesity, dyslipidemia, and impaired fasting glucose with hyperinsulinemia. Over 50% of patients with essential hypertension are hyperinsulinemic, regardless of whether they are untreated or in a stable program of treatment. Insulin resistance is related to sympathetic drive via a bidirectional mechanism. In this manuscript, we review the data that suggests that selective impairment of renal somatic afferent and sympathetic efferent nerves in patients with resistant hypertension both reduces markers of central sympathetic drive and favorably impacts diseases linked through central sympathetics—insulin resistance, heart failure, congestion, diuretic resistance, and cardiorenal disorders

    Interpolated wave functions for nonadiabatic simulations with the fixed-node quantum Monte Carlo method

    Full text link
    Simulating nonadiabatic effects with many-body wave function approaches is an open field with many challenges. Recent interest has been driven by new algorithmic developments and improved theoretical understanding of properties unique to electron-ion wave functions. Fixed-node diffusion Monte Caro is one technique that has shown promising results for simulating electron-ion systems. In particular, we focus on the CH molecule for which previous results suggested a relatively significant contribution to the energy from nonadiabatic effects. We propose a new wave function ansatz for diatomic systems which involves interpolating the determinant coefficients calculated from configuration interaction methods. We find this to be an improvement beyond previous wave function forms that have been considered. The calculated nonadiabatic contribution to the energy in the CH molecule is reduced compared to our previous results, but still remains the largest among the molecules under consideration.Comment: 7 pages, 3 figure

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    Get PDF
    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed

    Mesenchymal chondrosarcoma: prognostic factors and outcome in 113 patients. A European Musculoskeletal Oncology Society study

    Get PDF
    BACKGROUND: Mesenchymal chondrosarcoma (MCS) is a distinct, very rare sarcoma with little evidence supporting treatment recommendations. PATIENTS AND METHODS: Specialist centres collaborated to report prognostic factors and outcome for 113 patients. RESULTS: Median age was 30 years (range: 11-80), male/female ratio 1.1. Primary sites were extremities (40%), trunk (47%) and head and neck (13%), 41 arising primarily in soft tissue. Seventeen patients had metastases at diagnosis. Mean follow-up was 14.9 years (range: 1-34), median overall survival (OS) 17 years (95% confidence interval (CI): 10.3-28.6). Ninety-five of 96 patients with localised disease underwent surgery, 54 additionally received combination chemotherapy. Sixty-five of 95 patients are alive and 45 progression-free (5 local recurrence, 34 distant metastases, 11 combined). Median progression-free survival (PFS) and OS were 7 (95% CI: 3.03-10.96) and 20 (95% CI: 12.63-27.36) years respectively. Chemotherapy administration in patients with localised disease was associated with reduced risk of recurrence (P=0.046; hazard ratio (HR)=0.482 95% CI: 0.213-0.996) and death (P=0.004; HR=0.445 95% CI: 0.256-0.774). Clear resection margins predicted less frequent local recurrence (2% versus 27%; P=0.002). Primary site and origin did not influence survival. The absence of metastases at diagnosis was associated with a significantly better outcome (P<0.0001). Data on radiotherapy indications, dose and fractionation were insufficiently complete, to allow comment of its impact on outcomes. Median OS for patients with metastases at presentation was 3 years (95% CI: 0-4.25). CONCLUSIONS: Prognosis in MCS varies considerably. Metastatic disease at diagnosis has the strongest impact on survival. Complete resection and adjuvant chemotherapy should be considered as standard of care for localised disease
    corecore