23 research outputs found

    Benzimidazole-2-one:A novel anchoring principle for antagonizing p53-Mdm2

    No full text
    <p>Herein we propose the benzimidazole-2-one substructure as a suitable tryptophan mimic and thus a reasonable starting point for the design of p53 Mdm2 antagonists. We devise a short multicomponent reaction route to hitherto unknown 2-(2-oxo-2,3-dihydro-1H-benzoidlimidazol-1-yl)acetamides by reacting mono N-carbamate protected phenylenediamine in a Ugi-3 CR followed by base induced cyclisation. Our preliminary synthesis and screening results are presented here. The finding of the benzimidazolone moiety as a tryptophan replacement in mdm2 is significant as it offers access to novel scaffolds with potentially higher selectivitY and potency and improved biological activities. Observing low mu M affinities to mdm2 by NMR and fluorescence polarization we conclude that the 2-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)acetamide scaffold might be a good starting point to further optimize the affinities to Mdm2. (C) 2012 Elsevier Ltd. All rights reserved.</p>

    Ligand-Independent Activation of Androgen Receptors by Rho GTPase Signaling in Prostate Cancer

    No full text
    Prostate cancer invariably recurs after androgen deprivation therapy. Growth of this recurrent/androgen-independent form of prostate cancer may be due to increased androgen receptor (AR) transcriptional activity in the absence of androgen. This ligand-independent AR activation is promoted by some growth factors but the mechanism is not well understood. Vav3, a Rho guanosine triphosphatase guanine nucleotide exchange factor, which is activated by growth factors, is up-regulated in human prostate cancer. We show here that Vav3 levels increase during in vivo progression of prostate cancer to androgen independence. Vav3 strikingly enhanced growth factor activation of AR in the absence of androgen. Because Vav3 may be chronically activated in prostate cancer by growth factor receptors, we examined the effects of a constitutively active (Ca) form of Vav3 on AR transcriptional activity. Ca Vav3 caused nuclear localization and ligand-independent activation of AR via the Rho guanosine triphosphatase, Rac1. Ca Rac1 activation of AR occurred, in part, through MAPK/ERK signaling. Expression of active Rac1 conferred androgen-independent growth of prostate cancer cells in culture, soft agar, and mice. These findings suggest that Vav3/Rac 1 signaling is an important modulator of ligand-independent AR transcriptional activity in prostate cancer progression

    Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.

    Get PDF
    To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor. Genetic perturbation screening revealed that defects in the 53BP1/Shieldin complex, which cause PARP inhibitor resistance, result in in vitro and in vivo sensitivity to small molecule Polθ polymerase inhibitors. Mechanistically, ART558 increases biomarkers of single-stranded DNA and synthetic lethality in 53BP1-defective cells whilst the inhibition of DNA nucleases that promote end-resection reversed these effects, implicating these in the synthetic lethal mechanism-of-action. Taken together, these observations describe a drug class that elicits BRCA-gene synthetic lethality and PARP inhibitor synergy, as well as targeting a biomarker-defined mechanism of PARPi-resistance
    corecore