5,884 research outputs found

    The formation of fullerenes: clues from new C60, C70, and (possible) planar C24 detections in Magellanic Cloud Planetary Nebulae

    Full text link
    We present ten new Spitzer detections of fullerenes in Magellanic Cloud Planetary Nebulae, including the first extragalactic detections of the C70 molecule. These new fullerene detections together with the most recent laboratory data permit us to report an accurate determination of the C60 and C70 abundances in space. Also, we report evidence for the possible detection of planar C24 in some of our fullerene sources, as indicated by the detection of very unusual emission features coincident with the strongest transitions of this molecule at ~6.6, 9.8, and 20 um. The infrared spectra display a complex mix of aliphatic and aromatic species such as hydrogenated amorphous carbon grains (HACs), PAH clusters, fullerenes, and small dehydrogenated carbon clusters (possible planar C24). The coexistence of such a variety of molecular species supports the idea that fullerenes are formed from the decomposition of HACs. We propose that fullerenes are formed from the destruction of HACs, possibly as a consequence of shocks driven by the fast stellar winds, which can sometimes be very strong in transition sources and young PNe. This is supported by the fact that many of our fullerene-detected PNe show altered [NeIII]/[NeII] ratios suggestive of shocks as well as P-Cygni profiles in their UV lines indicative of recently enhanced mass loss.Comment: Accepted for publication in The Astrophysical Journal Letters (16 pages, 2 Tables and 3 figures

    Use of Intravenous Peramivir for Treatment of Severe Influenza A(H1N1)pdm09

    Get PDF
    Oral antiviral agents to treat influenza are challenging to administer in the intensive care unit (ICU). We describe 57 critically ill patients treated with the investigational intravenous neuraminidase inhibitor drug peramivir for influenza A (H1N1)pdm09 [pH1N1]. Most received late peramivir treatment following clinical deterioration in the ICU on enterically-administered oseltamivir therapy. The median age was 40 years (range 5 months-81 years). Common clinical complications included pneumonia or acute respiratory distress syndrome requiring mechanical ventilation (54; 95%), sepsis requiring vasopressor support (34/53; 64%), acute renal failure requiring hemodialysis (19/53; 36%) and secondary bacterial infection (14; 25%). Over half (29; 51%) died. When comparing the 57 peramivir-treated cases with 1627 critically ill cases who did not receive peramivir, peramivir recipients were more likely to be diagnosed with pneumonia/acute respiratory distress syndrome (p = 0.0002) or sepsis (p = <0.0001), require mechanical ventilation (p = <0.0001) or die (p = <0.0001). The high mortality could be due to the pre-existing clinical severity of cases prior to request for peramivir, but also raises questions about peramivir safety and effectiveness in hospitalized and critically ill patients. The use of peramivir merits further study in randomized controlled trials, or by use of methods such as propensity scoring and matching, to assess clinical effectiveness and safety

    Potential of the Julia programming language for high energy physics computing

    Full text link
    Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that provides both high-level programming and high-performance. The Julia programming language, developed at MIT especially to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of programming. The study shows that the HEP community would benefit from a large scale adoption of this programming language. The HEP-specific foundation libraries that would need to be consolidated are identifiedComment: 32 pages, 5 figures, 4 table

    Bow shocks, nova shells, disc winds and tilted discs: the nova-like V341 Ara has it all

    Get PDF
    V341 Ara was recently recognized as one of the closest (d ≃ 150 pc) and brightest (V ≃ 10) nova-like cataclysmic variables. This unique system is surrounded by a bright emission nebula, likely to be the remnant of a recent nova eruption. Embedded within this nebula is a prominent bow shock, where the system’s accretion disc wind runs into its own nova shell. In order to establish its fundamental properties, we present the first comprehensive multiwavelength study of the system. Long-term photometry reveals quasi-periodic, super-orbital variations with a characteristic time-scale of 10–16 d and typical amplitude of ≃1 mag. High-cadence photometry from theTransiting Exoplanet Survey Satellite (TESS) reveals for the first time both the orbital period and a ‘negative superhump’ period. The latter is usually interpreted as the signature of a tilted accretion disc. We propose a recently developed disc instability model as a plausible explanation for the photometric behaviour. In our spectroscopic data, we clearly detect antiphased absorption and emission-line components. Their radial velocities suggest a high mass ratio, which in turn implies an unusually low white-dwarf mass. We also constrain the wind mass-loss rate of the system from the spatially resolved [O III] emission produced in the bow shock; this can be used to test and calibrate accretion disc wind models. We suggest a possible association between V341 Ara and a ‘guest star’ mentioned in Chinese historical records in AD 1240. If this marks the date of the system’s nova eruption, V341 Ara would be the oldest recovered nova of its class and an excellent laboratory for testing nova theory

    New Young Star Candidates in the Taurus-Auriga Region as Selected From WISE

    Full text link
    The Taurus Molecular Cloud subtends a large solid angle on the sky, in excess of 250 square degrees. The search for legitimate Taurus members to date has been limited by sky coverage as well as the challenge of distinguishing members from field interlopers. The Wide-field Infrared Survey Explorer (WISE) has recently observed the entire sky, and we take advantage of the opportunity to search for young stellar object (YSO) candidate Taurus members from a ~260 square degree region designed to encompass previously-identified Taurus members. We use near- and mid-infrared colors to select objects with apparent infrared excesses and incorporate other catalogs of ancillary data to present: a list of rediscovered Taurus YSOs with infrared excesses (taken to be due to circumstellar disks), a list of rejected YSO candidates (largely galaxies), and a list of 94 surviving candidate new YSO-like Taurus members. There is likely to be contamination lingering in this candidate list, and follow-up spectra are warranted.Comment: Accepted to ApJ

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore